Respiratory water and heat loss of the black duck during flight at different ambient temperatures

1971 ◽  
Vol 49 (5) ◽  
pp. 767-774 ◽  
Author(s):  
M. Berger ◽  
J. S. Hart ◽  
O. Z. Roy

Pulmonary ventilation and temperature of expired air and of the respiratory passages has been measured by telemetry during flight in the black duck (Anas rubripes) and the respiratory water and heat loss has been calculated.During flight, temperature of expired air was higher than at rest and decreased with decreasing ambient temperatures. Accordingly, respiratory water loss as well as evaporative heat loss decreased at low ambient temperatures, whereas heat loss by warming of the inspired air increased. The data indicated respiratory water loss exceeded metabolic water production except at very low ambient temperatures. In the range between −16 °C to +19 °C, the total respiratory heat loss was fairly constant and amounted to 19% of the heat production. Evidence for the independence of total heat loss and production from changes in ambient temperature during flight is discussed.


1978 ◽  
Vol 235 (1) ◽  
pp. R41-R47
Author(s):  
M. T. Lin ◽  
I. H. Pang ◽  
S. I. Chern ◽  
W. Y. Chia

Elevating serotonin (5-HT) contents in brain with 5-hydroxytryptophan (5-HTP) reduced rectal temperature (Tre) in rabbits after peripheral decarboxylase inhibition with the aromatic-L-amino-acid decarboxylase inhibitor R04-4602 at two ambient temperatures (Ta), 2 and 22 degrees C. The hypothermia was brought about by both an increase in respiratory evaporative heat loss (Eres) and a decrease in metabolic rate (MR) in the cold. At a Ta of 22 degrees C, the hypothermia was achieved solely due to an increase in heat loss. Depleting brain contents of 5-HT with intraventricular, 5,7-dihydroxytryptamine (5,7-DHT) produced an increased Eres and ear blood flow even at Ta of 2 degrees C. Also, MR increased at all but the Ta of 32 degrees C. However, depleting the central and peripheral contents of 5-HT with p-chlorophenylalanine (pCPA) produced lower MR accompanied by lower Eres in the cold compared to the untreated control. Both groups of pCPA-treated and 5,7-DHT-treated animals maintained their Tre within normal limits. The data suggest that changes in 5-HT content in brain affects the MR of rabbits in the cold. Elevating brain content of 5-HT tends to depress the MR response to cold, while depleting brain content of 5-HT tends to enhance the MR response to cold.



2021 ◽  
pp. 004051752110265
Author(s):  
Huipu Gao ◽  
Anthoney Shawn Deaton ◽  
Xiaomeng Fang ◽  
Kyle Watson ◽  
Emiel A DenHartog ◽  
...  

The goal of this research was to understand how firefighter protective suits perform in different operational environments. This study used a sweating guarded hotplate to examine the effect of environmental temperature (20–45°C) and relative humidity (25–85% RH) on evaporative heat loss through firefighter turnout materials. Four firefighter turnout composites containing three different bi-component (semi-permeable) and one microporous moisture barriers were selected. The results showed that the evaporative resistance of microporous moisture barrier systems was independent of environmental testing conditions. However, absorbed moisture strongly affected evaporative heat loss through semi-permeable moisture barriers coated with a layer of nonporous hydrophilic polymer. Moisture absorption in mild environment (20–25°C) tests, or when testing at high humidity (>85% RH), significantly increased water vapor transmission in semi-permeable turnout systems. It was also found that environmental conditions used in the total heat loss (THL) test (25°C and 65% RH) produced moisture condensation in bi-component barrier systems, making them appear more breathable than could be expected when worn in hotter environments. Regression models successfully qualified the relationships between moisture uptake levels in semi-permeable barrier systems and evaporative resistance and THL. These findings reveal the limitations in relying on THL, the heat strain index currently called for by the NFPA 1971 Standard for Structural Firefighter personal protective equipment, and supports the need to measure turnout evaporative resistance at 35°C (Ret), in addition to THL at 25°C.



1985 ◽  
Vol 58 (5) ◽  
pp. 1592-1596 ◽  
Author(s):  
R. P. Kaminski ◽  
H. V. Forster ◽  
G. E. Bisgard ◽  
L. G. Pan ◽  
S. M. Dorsey ◽  
...  

The purpose of this study was to determine if the changes in O2 consumption (VO2) during CO2 inhalation could in part be due to stimulation of thermogenesis for homeothermy. Twelve ponies were exposed for 30-min periods to inspired CO2 (PIco2) levels of less than 0.7, 14, 28, and 42 Torr during the winter at 5 (neutral) and 23 degrees C ambient temperatures (TA) and during the summer at 21 (neutral TA), 30, and 12 degrees C. Elevating TA in both seasons resulted in an increased pulmonary ventilation (VE) and breathing frequency (f) (P less than 0.01) but no significant increase in VO2 (P greater than 0.05). Decreasing TA in the summer resulted in a decrease in VE and f (P less than 0.01) but no significant change in VO2 (P greater than 0.05). At neutral TA in both seasons, VO2 increased progressively (P less than 0.05) as PIco2 was increased from 14 to 28 and 42 Torr. The increases in VO2 during CO2 inhalation were attenuated (P less than 0.05) at elevated TA and accentuated at the relatively cold TA in the summer (P less than 0.05). Respiratory heat loss (RHL) during CO2 inhalation was inversely related to TA. Above a threshold RHL of 2 cal X min-1 X m-2, metabolic heat production (MHP) increased 0.3 cal X min-1 X m-2 for each unit increase in RHL during CO2 inhalation at the neutral and elevated TA. However, during cold stress in the summer, the slope of the MHP-RHL relationship was 1.6, indicating an increased MHP response to RHL.



1989 ◽  
Vol 66 (6) ◽  
pp. 2788-2798 ◽  
Author(s):  
D. W. Ray ◽  
E. P. Ingenito ◽  
M. Strek ◽  
P. T. Schumacker ◽  
J. Solway

We assessed the longitudinal distribution of intra-airway heat and water exchanges and their effects on airway wall temperature by directly measuring respiratory fluctuations in airstream temperature and humidity, as well as airway wall temperature, at multiple sites along the airways of endotracheally intubated dogs. By comparing these axial thermal and water profiles, we have demonstrated that increasing minute ventilation of cold or warm dry air leads to 1) further penetration of unconditioned air into the lung, 2) a shift of the principal site of total respiratory heat loss from the trachea to the bronchi, and 3) alteration of the relative contributions of conductive and evaporative heat losses to local total (conductive plus evaporative) heat loss. These changes were not accurately reflected in global measurements of respiratory heat and water exchange made at the free end of the endotracheal tube. Raising the temperature of inspired dry air from frigid to near body temperature principally altered the mechanism of airway cooling but did not influence airway mucosal temperature substantially. When local heat loss was increased from both trachea and bronchi (by increasing minute ventilation), only the tracheal mucosal temperature fell appreciably (up to 4.0 degrees C), even though the rise in heat loss from the bronchi about doubled that in the trachea. Thus it appears that the bronchi are better able to resist changes in airway wall temperature than is the trachea. These data indicate that the sites, magnitudes, and mechanisms of respiratory heat loss vary appreciably with breathing pattern and inspired gas temperature and that these changes cannot be predicted from measurements made at the mouth. In addition, they demonstrate that local heat (and presumably, water) sources that replenish mucosal heat and water lost to the airstream are important in determining the degree of local airway cooling (and presumably, drying).



1979 ◽  
Vol 57 (12) ◽  
pp. 1401-1406 ◽  
Author(s):  
M. T. Lin ◽  
Andi Chandra ◽  
T. C. Fung

The effects of both systemic and central administration of phentolamine on the thermoregulatory functions of conscious rats to various ambient temperatures were assessed. Injection of phentolamine intraperitoneally or into a lateral cerebral ventricle both produced a dose-dependent fall in rectal temperature at room temperature and below it. At a cold environmental temperature (8 °C) the hypothermia in response to phentolamine was due to a decrease in metabolic heat production, but at room temperature (22 °C) the hypothermia was due to cutaneous vasodilatation (as indicated by an increase in foot and tail skin temperatures) and decreased metabolic heat production. There were no changes in respiratory evaporative heat loss. However, in the hot environment (30 °C), phentolamine administration produced no changes in rectal temperature or other thermoregulatory responses. A central component of action is indicated by the fact that a much smaller intraventricular dose of phentolamine was required to exert the same effect as intraperitoneal injection. The data indicate that phentolamine decreases heat production and (or) increases heat loss which leads to hypothermia, probably via central nervous system actions.



2007 ◽  
Vol 32 (5) ◽  
pp. 293-299 ◽  
Author(s):  
T.T.T. Huynh ◽  
A.J.A. Aarnink ◽  
M.J.W. Heetkamp ◽  
M.W.A. Verstegen ◽  
B. Kemp


1986 ◽  
Vol 2 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Eivin Røskaft ◽  
Karl Erik Zachariassen ◽  
Geoffrey M. O. Maloiy ◽  
John M. Z. Kamau

ABSTRACTEast African tenebrionid beetles of the species Zophosis congesta are active on sun-exposed surfaces in dry habitats during the hottest part of the day, when most other animals have retreated to protected areas. They remain on the surface at ambient temperatures up to 65°C which is 15°C above their highest tolerated body temperature. The beetles appear to regulate their body temperature behaviourally. They frequently rest and cool in the shade, and after each cooling period they remain on the sun-exposed surface until the heat influx from the environment has caused the body temperature to rise close to the lethal level. They have relatively low rates of transpiratory water loss, and appear unable to depress their body temperature by means of evaporative heat loss. The rate of metabolic production of water amounts to only about 20% of the rate of transpiratory water loss. Thus, the beetles depend strongly on water intake from dietary sources. The advantage of this type of activity pattern is probably avoidance of predators.



Sign in / Sign up

Export Citation Format

Share Document