Plasma bradykininogen and reproductive cycles: studies during the oestrous cycle and pregnancy in the rat, and in the human menstrual cycle

1976 ◽  
Vol 54 (6) ◽  
pp. 941-947 ◽  
Author(s):  
M. McDonald ◽  
A. M. Perks

Plasma bradykininogen levels have been shown to rise about threefold late in pregnancy in the rat. However, they declined sharply 1–2 days before delivery.Plasma bradykininogen levels remained relatively unchanged through most the oestrous and menstrual cycles (rat, man). However, they showed a fall at two similar periods, in both cycles. A smaller decline occurred in metoestrus in the rat, and (probably) in the late luteal phase in the human. The largest fall took place around the time of ovulation in both the oestrous and the menstrual cycles. The decline was about 59% in the rat and 42% in the human. Bradykininogen showed no similar changes in the blood of male human controls. The suggestion that bradykinin could be involved in ovulation is discussed.

1972 ◽  
Vol 71 (4) ◽  
pp. 743-754 ◽  
Author(s):  
Tore H:son Holmdahl ◽  
Elof D. B. Johansson

ABSTRACT Liquid-gel chromatography on hydroxyalkoxypropyl Sephadex has been used to separate 17α-hydroxyprogesterone* and progesterone from interfering steroids prior to assay by competitive protein binding. During the luteal phase 0.5 ml of plasma was enough for determinations of both steroids. Fifteen samples could be assayed in less than 48 h. Oestradiol in plasma was assayed by radioimmunoassay. Daily blood samples were collected during 10 normal menstrual cycles in young, healthy women. The average cycle length was 29.7±2.0 (sd) days. 17α-hydroxyprogesterone displayed a midcyclic peak averaging 1.86±0.70 (sd) ng per ml coinciding with a midcyclic peak of oestradiol averaging 16.50± 5.95 (sd) ng per 100 ml of plasma. The highest luteal phase level of 17α-hydroxyprogesterone was 1.94 ±0.72 (sd) ng per ml. The corresponding levels for oestradiol were 9.1 ±3.8 (sd) ng per 100 ml. Progesterone formed a luteal plateau averaging 12.3±2.3 (sd) days. The highest luteal level of progesterone was 14.6±2.1 (sd) ng per ml. The peripheral plasma pattern of 17α-hydroxyprogesterone seems to mimic that of oestradiol during the human menstrual cycle.


1993 ◽  
Vol 23 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Uriel Halbreich ◽  
Henry Tworek

Objective: Dysphoric Premenstrual Syndromes (PMS) are quite prevalent and in some women they are severe enough to warrant treatment. Their pathophysiology is still unknown, despite increased interest and research. Here we review the possible role of serotonin in the multidimensional interactive pathophysiology of PMS. Method: Over 170 articles are reviewed. An extensive library search has been conducted and articles are included because of their relevance to: 1) the phenomenology of PMS; 2) the putative association of serotonergic (5-HT) activity with syndromes that occur premenstrually; 3) changes in 5-HT activity along the menstrual cycle, especially the late luteal phase; 4) influence of gonadal hormones on serotonergic functions; 5) endocrine strategies for assessment of 5-HT abnormalities; and 6) treatment studies of PMS with serotonergic agonists. Results and Conclusions: The data presented here suggest that post-synaptic serotonergic responsivity might be altered during the late-luteal-premenstrual phase of the menstrual cycle. Some serotonergic functions of women with PMS might be altered during the entire cycle and be associated with a vulnerability trait. It is hypothesized that gonadal hormones might cause changes in levels of activity of 5-HT systems as part of a multidimensional interactive system. Strategies to evaluate 5-HT activities in the context of the menstrual cycle are discussed—leading to the conclusion that the most promising approach is active stimulation with specific post-synaptic serotonin agonists. Treatment outcome studies of some imperfect compounds that are currently applied as a symptomatic treatment of PMS support the notion that 5-HT is involved in the pathophysiology of these syndromes.


2021 ◽  
pp. 112067212110576
Author(s):  
Nazife Aşikgarip ◽  
Emine Temel ◽  
Kemal Örnek

Purpose To explore the effect of menstrual cycle on choroidal vascularity index (CVI). Methods Thirty six eyes of 36 healthy women were included in this prospective study. The menstrual cycles were regular and ranged from 28 to 30 days in length. Optical coherence tomography images were obtained in 3 different phases of the menstrual cycle. The choroidal thickness (CT), total choroidal area, luminal area, stromal area, and CVI were quantified. Results Mean subfoveal, nasal and temporal CT were significantly changed in mid-luteal phase in comparison to early follicular (p = 0.018, p = 0.006 and p = 0.001, respectively) and ovulatory phases (p = 0.037, p = 0.037, and p = 0.035, respectively). Mean CVI showed a significant change in mid-luteal phase when compared with early follicular (p = 0.001) and ovulatory phases (p = 0.036). Conclusion CVI seemed to be affected in mid-luteal phase of menstrual cycle. This should be considered while analyzing choroidal structure in otherwise healthy women.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Biscaro ◽  
A R Lorenzon ◽  
E L Motta ◽  
C Gomes

Abstract Study question Is there a difference between IVF outcomes in patients undergoing follicular versus luteal phase ovarian stimulation in different menstrual cycles? Summary answer Number of euploid blastocyst were higher in luteal phase ovarian stimulation IVF cycles. All other outcomes were similar between follicular and luteal phase IVF cycles. What is known already It has been published that human beings can have two or three follicular recruitment waves as observed in animals studies a long time ago. From these findings, several recent studies showed that two egg retrievals at the same menstrual cycle, named as Duo Stim, optimize time and IVF outcomes in women with low ovarian reserve due to more eggs retrieved in a shorter period with consequently higher probability of having good embryos to transfer. However, there is no knowledge about diferences concerning IVF outcomes between folicular and luteal ovarian stimulation, performed at the same women in different menstrual cycles. Study design, size, duration Retrospective, case-control study in a single IVF center. One-hundred-two patients who had two IVF treatments – the first cycle initiating ovarian stimulation at follicular phase (FPS) and the second cycle initiating after a spontaneous ovulation at luteal phase (LPS) – in different menstrual cycles (until 6 months apart) between 2014 and 2020, were included. Statistical analysis was performed with Mann-Whitney test and was considered significant when p ≤ 0.05. Data is represented as mean±SD. Participants/materials, setting, methods Patients underwent two IVF treatments in different menstrual cycles; the FPS IVF treatment was initiating at D2/D3 of menstrual cycle and the LPS treatment started three or four days after spontaneous ovulation, if at least 4 antral follicles were detected. Both IVF treatments were performed with and antagonist protocol and freeze all strategy. The majority of patients presents low ovarian reserve/Ovarian age as primary infertility factor (84.3%). Main results and the role of chance Patient’s mean age was 39.30±3.15 years, BMI (22.66±3.16) and AMH levels (0.85±0.85 ng/mL). Comparison of hormonal levels at the beginning of ovarian stimulation showed differences for FPS vs LPS, as expected: E2 (39.69±31,10 pg/mL vs 177.33±214.26 pg/mL,p< 0.0001) and P4 (0.76±2.47ng/mL vs 3,00±5.00 ng/mL,p< 0.0001). However, E2 and P4 at the day of oocyte maturation trigger were not different between FPS and LPS (1355.24±895.73 pg/mL vs 1133.14±973.01 ng/mL,p=0.0883 and 1.12±1.49 ng/mL vs 2.94±6.51,p=0.0972 respectively). There was no difference for total dose of gonadotrofins (FPS 2786.43±1102.39.01UI vs LPS 2824.12±1188.87UI, p = 0,8578), FSH (FPS 9.50±4.98 vs LPS 11.90±12.99,p=0.7502) and AFC (FPS 7.13±4.25 vs LPS 6.42±4.65,p=0,0944). From 102 patients that started ovarian stimulation, 78 had 1 or more oocyte collect in FPS group and 75 in LPS group: OPU (FPS 4.78±4.93 vs LPS 4.65±5.54,p=0.7889), number of MII (FPS 3.21±3.52 vs LPS 3.40±4.53,p=0.7889). From those, 52 patients performed ICSI in both cycles; fertilization rate 64.9%±28.6% for FPS vs 62.1%±32.4% for LPS,p=0.7899) and blastocyst formation 2.15±2.15 for FPS vs 2.54±2.35,p=0.3496). Data from 25 patients who had embryo biopsy for PGT-A showed similar number of blastocyst biopsed (2.12±1.72 FPS vs 2.48±1.71 LPS,p=0.3101) and a statistically significant difference regarding number of euploid blastocyst (0,20±0,41 FPS vs 0,96±0,93 LPS,p=0,0008). Limitations, reasons for caution This is a retrospective study in a limited number of patients. Therefore, it is not possible to make a definitive conclusion that LPS proportionate higher number of euploid than FPS. More studies are necessary to investigate not only IVF outcomes but also the impact on pregnancy rates. Wider implications of the findings: In our study, LPS protocol after spontaneous ovulation, presents similar IVF outcomes compared to routinely FPS protocol. Intriguingly, the number of euploid blastocyst was significant higher in LPS, which may be further investigated. In this way, LPS is another option of IVF treatment, and may optimize time and treatment results. Trial registration number Not applicable


Reproduction ◽  
2001 ◽  
pp. 643-648 ◽  
Author(s):  
A Shaham-Albalancy ◽  
Y Folman ◽  
M Kaim ◽  
M Rosenberg ◽  
D Wolfenson

Low progesterone concentrations during the bovine oestrous cycle induce enhanced responsiveness to oxytocin challenge late in the luteal phase of the same cycle. The delayed effect of low progesterone concentrations during one oestrous cycle on uterine PGF(2alpha) secretion after oxytocin challenge on day 15 or 16 of the subsequent cycle was studied by measuring the concentrations of the major PGF(2alpha) metabolite (13,14-dihydro-15-keto PGF(2alpha); PGFM) in plasma. Two experiments were conducted, differing in the type of progesterone treatment and in the shape of the low progesterone concentration curves. In Expt 1, progesterone supplementation with intravaginal progesterone inserts, with or without an active corpus luteum, was used to obtain high, or low and constant plasma progesterone concentrations, respectively. In Expt 2, untreated cows, representing high progesterone treatment, were compared with cows that had low but increasing plasma progesterone concentrations that were achieved by manipulating endogenous progesterone secretion of the corpus luteum. Neither experiment revealed any differences in plasma progesterone concentrations between the high and low progesterone groups in the subsequent oestrous cycle. In both experiments, both groups had similar basal concentrations of PGFM on day 15 (Expt 1) or 16 (Expt 2) of the subsequent oestrous cycle, 18 days after progesterone treatments had ended. In both experiments, the increases in PGFM concentrations in the low progesterone groups after an oxytocin challenge were markedly higher than in the high progesterone groups. These results indicate that low progesterone concentrations during an oestrous cycle have a delayed stimulatory effect on uterine responsiveness to oxytocin during the late luteal phase of the subsequent cycle. This resulting increase in PGF(2alpha) secretion may interfere with luteal maintenance during the early stages of pregnancy.


1998 ◽  
Vol 116 (3) ◽  
pp. 1734-1737 ◽  
Author(s):  
Jorge Haddad Filho ◽  
Agnaldo Pereira Cedenho ◽  
Vilmon de Freitas

CONTEXT: Endometrial maturation, important in the diagnosis of infertile couples, has been evaluated since 1950 using the Noyes criteria. Nevertheless, there is no consensus regarding the most suitable period of the luteal phase for performing the biopsy. OBJETIVE: This study evaluated the correlation between the histological dating of two endometrial biopsies performed in the same menstrual cycle, on luteal phase days six and ten. DESIGN: Prospective study. SETTING: Human Reproduction Division of the Federal University of São Paulo, referral center. PATIENTS:Twenty-five women complaining of infertility had their menstrual cycles monitored by ultrasound and LH plasma levels, to obtain evidence of ovulation. PROCEDURES: Endometrial biopsies were performed on luteal phase days LH+6 and LH+10 (luteal phase day 1 = LH+1 = the day that follows LH peak). Dating was done according to morphometric criteria, in which an endometrium sample is considered out of phase if the minimum maturation delay is one day. On day LH+6, blood was drawn for plasma progesterone level determination. RESULTS: All patients had an ovulatory cycle (mean LH peak: 47.4 U/L; mean follicular diameter on LH peak day: 18.9 mm; mean endometrial thickness on LH peak day: 10.3 mm; mean plasma progesterone level on day LH+6: 14.4 ng/ml). 14 patients had both biopsies in phase; 5 patients had out of phase biopsies only on day LH+6; 3 had out of phase biopsies only on day LH+10 and 3 patients had out of phase biopsies on both days. McNemar's test showed no statistical difference between these data (p>33.36%). CONCLUSIONS: The correlation found between the endometrial datings suggests that biopsies performed on either of these two days are suitable for evaluation of endometrial maturation.


Reproduction ◽  
2002 ◽  
pp. 259-265 ◽  
Author(s):  
◽  
Y Xia ◽  
T O'Shea ◽  
S Hayward ◽  
AE O'Connor ◽  
...  

The aim of this study was to investigate the changes in follistatin, an activin binding protein, during the oestrous cycle, gestation and parturition in ewes using a radioimmunoassay for total follistatin, which uses dissociating reagents to remove the interference of activin. Follistatin concentrations remained unchanged (2.7 +/- 0.2 ng ml(-1)) during the oestrous cycle and decreased as pregnancy progressed. Follistatin concentrations in allantoic fluid also decreased during gestation, whereas in amniotic fluid follistatin concentrations reached a peak at day 75 of gestation (9.8 ng ml(-1)) and had decreased to 4.4 ng ml(-1) at day 140. Follistatin concentrations in fetal blood (7.0 +/- 0.5 ng ml(-1)) did not change from day 50 to day 140 of gestation but were significantly higher than in matched maternal samples (3.1 +/- 0.3 ng ml(-1)). Circulating follistatin in ewes was significantly increased on the day of parturition (5.6 +/- 0.6 ng ml(-1)) compared with the days before parturition (2.7 +/- 0.4 ng ml(-1)), but had decreased by day 2 after birth. Blood samples from newborn lambs showed that plasma follistatin concentration (13.4 +/- 2.3 ng ml(-1)) was significantly higher than that of the mothers and remained high for at least 7 days after birth. These data support previous studies of the human menstrual cycle indicating that follistatin is not an endocrine signal from the ovary; however, in contrast to human pregnancies, follistatin concentrations in sheep decreased and become high only after or during parturition. This difference observed between species may reflect different physiological effects of follistatin or may be the result of measurement of different isoforms.


Sign in / Sign up

Export Citation Format

Share Document