Strike tactics of Esox

1980 ◽  
Vol 58 (8) ◽  
pp. 1462-1469 ◽  
Author(s):  
P. W. Webb ◽  
J. M. Skadsen

Strike tactics of a lunging piscivore attacking solitary prey were observed in an arena 50 cm long, 50 cm wide, and 10 cm deep and recorded on television video tape. The predators were cultured tiger musky (Esox sp.). The prey were fathead minnow (Pimephales promelas). Predator strikes were S type fast starts allowing multidirectional attacks. Two strike patterns were observed. Pattern A strikes commenced from a stretched-straight body posture and progressed from fast start stage 1 through the normal three-stage sequence. Pattern B strikes deleted the less efficient first stage, starting acceleration from an S posture. Strikes were directed in the vicinity of the center of mass of the prey, the point that moves least during escape attempts. Prey were usually attacked from the side, minimizing the displacement of the prey from the strike path after an escape attempt. Pattern A strikes were launched over distances from 3.8 to 33.9 cm and took 50–300 ms. Catch success was 42%. Pattern B strikes were used for short distances from 1.7 to 7.7 cm, taking 17–100 ms and were 95% successful. The observed strike tactics were those expected to maximize the probability of catching elusive fish prey.


1986 ◽  
Vol 43 (4) ◽  
pp. 763-771 ◽  
Author(s):  
P. W. Webb

Experiments were performed using four prey species (fathead minnow, Pimephales promelas, largemouth bass, Micropterus salmoides, bluegill, Lepomis macrochirus, and tiger musky, Esox sp.) with various body and fin forms attacked by largemouth bass predators to determine how body and fin morphology, performance, and response thresholds influenced prey vulnerability. Prey differed in three factors that could affect the outcome of predator–prey interactions: body depth, the presence of spiny rays, and locomotor performance capability. Captures were only successful for strikes near the center of mass. The presence of spines was not shown to substantially affect predator strike targets on prey, but large body depth misdirected strikes from the center of mass area and increased the probability of prey escaping. Prey escape speeds were variable and not maximum. Acceleration rates in the startle response varied among the prey species. Tiger musky had the highest acceleration rates (11.7–12.2 m∙s−2). Acceleration rates decreased for the other prey in the order bluegill, largemouth bass, and fathead minnow. Predators attacking prey with higher acceleration performance were more likely to abort attacks and less likely to chase prey. Prey response thresholds were defined as the rate of change of the angle subtended by the predator as viewed by the prey at the start of the prey's motor response. This looming threshold varied among the species tested, and predators were more likely to abort attacks on prey with low thresholds. Low prey response thresholds correlated with high acceleration rates. The basis for multiple, rather than complementing, adaptations facilitating prey escape is not known, but may be related to risks and benefits during foraging by fish with different diets.



2010 ◽  
Vol 45 (2) ◽  
pp. 187-200 ◽  
Author(s):  
Joanne L. Parrott ◽  
L. Mark Hewitt ◽  
Tibor G. Kovacs ◽  
Deborah L. MacLatchy ◽  
Pierre H. Martel ◽  
...  

Abstract To evaluate currently available bioassays for their use in investigating the causes of pulp and paper mill effluent effects on fish reproduction, the responses of wild white sucker (Catostomus commersoni) collected from the receiving environment at the bleached kraft mill at La Tuque, Quebec, were compared with responses of fathead minnow (Pimephales promelas) exposed to effluent in a laboratory lifecycle test. White sucker collected at effluent exposed sites had increased liver size but none of the reproductive effects that had been documented in earlier field studies at this site. Exposure to 1, 3, 10, 30, and 100% bleached kraft mill effluent (BKME) in the lab led to significantly decreased length, but increased weight and liver size in male fathead minnow. Female length was also decreased and liver size was increased at high effluent exposures. Most effluent concentrations (1 to 30%) significantly increased egg production compared with controls. The fathead minnow lifecycle assay mirrored the effects seen in wild fish captured downstream of the BKME discharge. These results will be used to select short-term fish tests for investigating the causes of and solutions to the effects of mill effluents on fish reproduction.



2021 ◽  
pp. 105884
Author(s):  
Roxanne Bérubé ◽  
Charles Gauthier ◽  
Thibault Bourdin ◽  
Marilou Bouffard ◽  
Gaëlle Triffault-Bouchet ◽  
...  


2014 ◽  
Vol 48 (14) ◽  
pp. 8179-8187 ◽  
Author(s):  
Laura E. Ellestad ◽  
Mary Cardon ◽  
Ian G. Chambers ◽  
Jennifer L. Farmer ◽  
Phillip Hartig ◽  
...  


2002 ◽  
Vol 205 (17) ◽  
pp. 2591-2603 ◽  
Author(s):  
Eric D. Tytell ◽  
George V. Lauder

SUMMARYThe fast-start escape response is the primary reflexive escape mechanism in a wide phylogenetic range of fishes. To add detail to previously reported novel muscle activity patterns during the escape response of the bichir, Polypterus, we analyzed escape kinematics and muscle activity patterns in Polypterus senegalus using high-speed video and electromyography (EMG). Five fish were filmed at 250 Hz while synchronously recording white muscle activity at five sites on both sides of the body simultaneously (10 sites in total). Body wave speed and center of mass velocity, acceleration and curvature were calculated from digitized outlines. Six EMG variables per channel were also measured to characterize the motor pattern. P. senegalus shows a wide range of activity patterns, from very strong responses, in which the head often touched the tail, to very weak responses. This variation in strength is significantly correlated with the stimulus and is mechanically driven by changes in stage 1 muscle activity duration. Besides these changes in duration, the stage 1 muscle activity is unusual because it has strong bilateral activity, although the observed contralateral activity is significantly weaker and shorter in duration than ipsilateral activity. Bilateral activity may stiffen the body, but it does so by a constant amount over the variation we observed; therefore, P. senegalus does not modulate fast-start wave speed by changing body stiffness. Escape responses almost always have stage 2 contralateral muscle activity, often only in the anterior third of the body. The magnitude of the stage 2 activity is the primary predictor of final escape velocity.



1972 ◽  
Vol 29 (5) ◽  
pp. 583-587 ◽  
Author(s):  
A. R. Carlson

When fathead minnows (Pimephales promelas) were exposed to five concentrations (0.008–0.68 mg/liter) of the insecticide carbaryl for 9 months and throughout a life cycle, the highest concentration prevented reproduction and decreased survival. At the high concentration, testes contained motile sperm and ovaries were in a flaccid condition and appeared to be in a resorptive state. At the 0.68 mg/liter concentration, carbaryl appeared to contribute to mortality of larvae (produced by unexposed parents) within 30 days of hatching. Survival of young grown in the 0.008 mg/liter concentration was reduced. Since no demonstrable effects were noted for survival, growth, or reproduction at the 0.017, 0.062, and 0.21 mg/liter concentrations, this low survival value is considered not due to carbaryl. The 96-hr median tolerance concentration (TL 50) and the lethal threshold concentration (LTC) for 2-month-old fathead minnows were 9.0 mg/liter. The maximum acceptable toxicant concentration (MATC) for fathead minnows exposed to carbaryl in water with a hardness of 45.2 mg/liter and a pH of 7.5 lies between 0.21 and 0.68 mg/liter. The application factors (MATC/96-hr TL50 and MATC/LTC) both lie between 0.023 and 0.075.





Sign in / Sign up

Export Citation Format

Share Document