Rhythmic thermoregulation in larval cranefly (Diptera: Tipulidae)

1981 ◽  
Vol 59 (3) ◽  
pp. 555-558 ◽  
Author(s):  
Martin Kavaliers

The behaviour of fourth-instar larvae of a cranefly Tipula plutonis was examined in a horizontal thermal gradient. Under a 12 h light: 12 h dark cycle, larvae displayed a diel rhythm of preferred temperatures. Maximum temperatures (16–18 °C) were selected during the scotophase and minimum temperatures (12–14 °C) were selected during the photophase of the light–dark cycle. Under constant illumination, temperature selection continued as an endogenous free-running circadian rhythm of behavioural thermoregulation.

1980 ◽  
Vol 58 (11) ◽  
pp. 2152-2155 ◽  
Author(s):  
Martin Kavaliers

The behaviour of the aquatic gastropod Helisoma trivolis was examined in a thermal gradient. Under a 12 h light: 12 h dark cycle gastropods displayed a diel rhythm of preferred temperature selection. Maximum temperatures (21–22 °C) were selected during the dark phase and minimum temperatures (17–18 °C) were selected during the light phase of the light–dark cycle. Under constant darkness temperature selection continued as an endogenous free-running circadian rhythm of behavioural thermoregulation.


1977 ◽  
Vol 233 (5) ◽  
pp. R230-R238 ◽  
Author(s):  
M. C. Moore-ede ◽  
W. S. Schmelzer ◽  
D. A. Kass ◽  
J. A. Herd

Conscious chair-acclimatized squirrel monkeys (Saimiri sciureus) studied with lights on (600 lx) from 0800 to 2000 h daily (LD 12:12) display a prominent circadian rhythm in renal potassium excretion. The characteristics of this rhythm were reproduced in adrenalectomized monkeys by infusing 5 mg cortisol and 0.001 mg aldosterone, or 5 mg cortisol alone, between 0800 and 0900 h daily. When the timing of cortisol adminisration (with or without aldosterone) was phase-delayed by 8 h, the urinary potassium rhythm resynchronized by 80% of the cortisol phase shift, but only after a transient response lasting 3–4 days. With the same daily dose of adrenal steroids given as a continuous infusion throughout each 24 h, urinary potassium excretion showed free-running oscillations no longer synchronized to the light-dark cycle. These results indicate that the cirdacian rhythm of plasma cortisol concentration acts as an internal mediator in the circadian timing system, synchronizing a potentially autonomous oscillation in renal potassium excretion to environmental time cues and to other circadian rhythms within the animal.


2011 ◽  
Vol 3 (1) ◽  
pp. 38-50
Author(s):  
B. Sailaja ◽  
S. Sivaprasad

The photoperiod-induced clock-shifting in the free running time of the circadian protein and amino acid rhythms was studied in the larval fat body of Bombyx mori. The analysis of peaks and troughs of phase response curves of the rhythm revealed that the fourth and fifth instar larvae grown under normal 12 h light and 12 h dark cycle (LD) showed 7 protein synthetic cycles, while those reared under continuous light (LL) recorded 9.5 cycles in fourth instar and 8 in fifth instar. Under continuous dark (DD), the protein rhythm maintained 8 cycles in fourth instar and 7.5 cycles in fifth instar. Clearly, both LL and DD conditions advance the 24-h free running time of the protein rhythm by durations ranging from 1.6 to 6.5 h. Comparative analysis of protein and amino acid rhythms shows that the photoperiod modulates the free running time of the former by altering the rate of amino acid mobilization.


2021 ◽  
Author(s):  
Viacheslav V. Krylov ◽  
Evgeny I. Izvekov ◽  
Vera V. Pavlova ◽  
Natalia A. Pankova ◽  
Elena A. Osipova

AbstractThe locomotor activity of zebrafish (Danio rerio) has a pronounced, well-studied circadian rhythm. Under constant illumination, the period of free-running locomotor activity in this species usually becomes less than 24 hours. To evaluate the entraining capabilities of slow magnetic variations, zebrafish locomotor activity was evaluated at constant illumination and fluctuating magnetic field with a period of 26.8 hours. Lomb-Scargle periodogram revealed significant free-running rhythms of locomotor activity and related behavioral endpoints with a period close to 27 hours. Obtained results reveal the potential of slow magnetic fluctuations for entrainment of the circadian rhythms in zebrafish. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.


2011 ◽  
Vol 3 (2) ◽  
pp. 176-188
Author(s):  
S. Sivaprasad ◽  
B. Sailaja

The photoperiod-modulated clock-shifting in the circadian protein rhythm was studied in the segmental muscle of Bombyx mori. The analysis of phase response curves of the fourth instar rhythm revealed that the muscle tissue completes six protein synthetic cycles (PS cycles) under normal 12 hr light and 12 hr dark cycle (LD), 8 cycles each under continuous light (LL) and continuous dark (DD) conditions. The fifth instar protein rhythm showed seven PS cycles each under LD and DD conditions, but only six under LL. The protein rhythm gets clock-shifted in instarspecific and photoperiod-specific fashions. In the fourth instar, both LL and DD conditions advanced the 24 hr free running time of the rhythm by six hours and set it at 18 hr, but in the fifth instar it is delayed by 4 hr and set at ~28 hr under LL, but remained unchanged under DD. Comparative analysis of protein and amino acid profiles shows that the photoperiod modulates the protein rhythm by altering the rate of amino acid mobilization.


Author(s):  
V. Krylov ◽  
E. Izvekov ◽  
V. Pavlova ◽  
N. Pankova ◽  
E. Osipova

The locomotor activity of zebrafish (Danio rerio) has a pronounced, well-studied circadian rhythm. Under constant illumination, the period of free-running locomotor activity in this species usually becomes less than 24 hours. To evaluate the entraining capabilities of slow magnetic variations, zebrafish locomotor activity was evaluated at constant illumination and fluctuating magnetic field with a period of 26.8 hours. Lomb-Scargle periodogram revealed significant free-running rhythms of locomotor activity and related behavioral endpoints with a period close to 27 hours. Obtained results reveal the potential of slow magnetic fluctuations for entrainment of the circadian rhythms in zebrafish. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.


1971 ◽  
Vol 28 (11) ◽  
pp. 1801-1804 ◽  
Author(s):  
R. W. McCauley ◽  
W. L. Pond

Preferred temperatures of underyearling rainbow trout (Salmo gairdneri) were determined in both vertical and horizontal temperature gradients. No statistically significant difference was found between the preferred temperatures by the two different methods. This suggests that the nature of the gradient plays a lesser role than generally believed in laboratory investigations of temperature preference.


1984 ◽  
Vol 247 (2) ◽  
pp. R250-R256
Author(s):  
H. G. Scholubbers ◽  
W. Taylor ◽  
L. Rensing

Membrane properties of whole cells of Gonyaulax polyedra were measured by fluorescence polarization. Circadian changes of fluorescence polarization exist in exponentially growing cultures. They show an amplitude larger than that of stationary cultures, indicating that a part of the change is due to or amplified by an ongoing cell cycle. Measurements of parameters of the circadian glow rhythm were analyzed for possible correlation with the membrane data. Considerable differences (Q10 = 2.5-3.0) in fluorescence polarization were found in cultures kept at different temperatures ranging from 15 to 27.5 degrees C. The free-running period length at different temperatures, on the other hand, differed only slightly (Q10 = 0.9-1.1). Stationary cultures showed higher fluorescence polarization compared with growing cultures, whereas the free-running period lengths did not differ in cultures of various densities and growth rates. Temperature steps of different sign changed the fluorescence polarization slightly in different directions. The phase shift of 4-h pulses (-5, -9, +7 degrees C) resulted in maximal phase advances of 4, 6, and 2 h, respectively. The phasing of the phase-response curves was identical in all these experiments, a finding not to be expected if the pulses act via the measured membrane properties. Pulses of drugs that change the fluorescence polarization (e.g., chlorpromazine and lidocaine) did not or only slightly phase-shift the circadian rhythm.


Sign in / Sign up

Export Citation Format

Share Document