A modified electronic shuttlebox for joint thermoregulatory and toxicological studies

1984 ◽  
Vol 62 (10) ◽  
pp. 1950-1953 ◽  
Author(s):  
Michael A. Gregory ◽  
Perry D. Anderson

This paper presents a modified electronic shuttlebox for studies of behavioral thermoregulation in fish. The apparatus incorporates continual water replacement, the water temperature being controlled by the fish. Such a design facilitates long-term studies, with or without a chemical agent. Additionally, the absence of a temperature gradient permits strict response-conditioning experimentation. Fingerling rainbow trout (Salmo gairdneri) maintained a mean temperature of 18.1 ± 0.6 °C, thermoregulating with a degree of regularity and precision similar to the findings of other workers using different devices. Fish have been able to successfully thermoregulate in this apparatus for periods of up to 6 weeks.

1989 ◽  
Vol 6 (4) ◽  
pp. 221-229 ◽  
Author(s):  
Per-Erik Olsson ◽  
Åke Larsson ◽  
Amund Maage ◽  
Carl Haux ◽  
Keith Bonham ◽  
...  

1978 ◽  
Vol 35 (11) ◽  
pp. 1430-1433 ◽  
Author(s):  
Wen-Hwa Kwain ◽  
Robert W. McCauley

During their first 12 mo of life rainbow trout, Salmo gairdneri, preferred progressively cooler temperatures as they grew older; 19 °C was selected during the 1st mo and the selected temperature declined by intervals of 0.5 °C for each of the following months up to the 3rd mo. Fish swam higher in temperature gradients exposed to overhead illumination than in those in total darkness. This trend was reversed during the following 9 mo. These findings demonstrate the important role that age plays in the temperature preference of this species and the influence that overhead light may have on the distribution of fish in vertical gradients. Key words: preferred temperature, age, Salmo gairdneri, light gradients


1974 ◽  
Vol 31 (10) ◽  
pp. 1649-1652 ◽  
Author(s):  
Robert E. Reinert ◽  
Linda J. Stone ◽  
Wayne A. Willford

Amounts of mercury and DDT residues accumulated from water by yearling rainbow trout (Salmo gairdneri) in the laboratory increased as water temperature increased. Fish exposed to methylmercuric chloride at concentrations of 234–263 parts per trillion for 12 wk at 5, 10, and 15 C accumulated 1.19, 1.71, and 1.96 ppm; fish exposed to p,p′DDT at concentrations of 133–176 parts per trillion accumulated 3.76, 5.93, and 6.82 ppm. Concentrations of mercury accumulated by the fish were significantly different (P < 0.01) at each of the three temperatures, and the concentrations of DDT were significantly different at 5 and 10 and 5 and 15 C. Throughout the period of exposure, the concentration factors (concentration of contaminant in the fish/concentration in water) at each of the three temperatures were far higher for p,p′DDT than for methylmercuric chloride.


2020 ◽  
Vol 27 (41) ◽  
pp. 6926-6965
Author(s):  
Oludemi Taofiq ◽  
Maria Filomena Barreiro ◽  
Isabel C.F.R. Ferreira

Bioactive compounds derived from mushrooms have been shown to present promising potential as cosmeceutical or nutricosmetic ingredients. Scientific data reviewed herein showed that extracts prepared from medicinal and edible mushrooms and their individual metabolites presented antiinflammatory, antioxidant, photoprotective, antimicrobial, anti-tyrosinase, anti-elastase, and anticollagenase activities. These metabolites can be utilised as ingredients to suppress the severity of Inflammatory Skin Diseases, offer photoprotection to the skin, and correct Hyperpigmentation. However, studies regarding the molecular mechanism behind the mentioned bioactivities are still lacking. Challenges associated with the use of mushroom extracts and their associated metabolites as cosmeceutical and nutricosmetic ingredients include several steps from the fruiting bodies to the final product: extraction optimization, estimation of the efficacy and safety claims, the use of micro and nanocarriers to allow for controlled release and the pros and cons associated with the use of extracts vs individual compounds. This systematic review highlights that mushrooms contain diverse biomolecules that can be sustainably used in the development of nutricosmetic and cosmeceutical formulations. Reports regarding stability, compatibility, and safety assessment, but also toxicological studies are still needed to be considered. Furthermore, some of the constraints and limitations hindering the development of this type of ingredients still require long-term studies to achieve major breakthroughs.


1962 ◽  
Vol 19 (2) ◽  
pp. 201-270 ◽  
Author(s):  
T. G. Northcote

The marked differences in response to water current, exhibited by juvenile rainbow trout migrating into Loon Lake from its outlet and inlet streams, were studied both in the field and in experimental laboratory apparatus. All available evidence argued against genetically discrete outlet and inlet stocks, each maintaining different innate responses to water current. Difference in water temperature between streams was shown, in field and laboratory experiments, to regulate direction of juvenile trout migration through action on behaviour associated with downstream movement, maintenance of position and upstream movement.In laboratory experiments with cool (5 and 10 °C) flowing water, recently emerged fry rarely made contact with the stream bottom in darkness and exhibited much more downstream movement than in warm (> 14 °C) water. In cool streams of the Loon Lake system (daily mean consistently < 13 °C) large numbers of recently emerged fry moved downstream in darkness. Laboratory experiments indicated that combination of cool water (10 °C) and long day length (16 hours) induced downstream movement of fingerlings. In the field, fingerlings moved downstream largely in late spring and summer in cool streams of the Loon Lake system.In laboratory experiments with warm (15 and 20 °C) flowing water, recently emerged fry made frequent contact with the stream bottom in darkness and exhibited much less downstream movement than in cool (10 °C) water. In the warm outlet stream (daily mean in summer usually > 15 °C) recently emerged fry maintained position in darkness. Laboratory experiments suggested that short day length (8 hours) may facilitate maintenance of position exhibited by fingerlings in streams during late autumn and winter.Upstream movement of fry recorded in the field and tested in the laboratory was most pronounced in warm water (> 14 °C). Fingerlings subjected to rapid 5–degree (C) increases in water temperature in an experimental stream exhibited an immediate increase in upstream movement. Upstream movement in summer of large fry and fingerlings occurred only in the warm outlet stream; daily periodicity of upstream movement was positively correlated with sharp rises in water temperature.Evidence examined from four other widely separated stream systems indicated an environmental control of migration in juvenile rainbow trout similar to that demonstrated in the Loon Lake stream system. Possible mechanisms and interaction of factors controlling migratory patterns between and within streams are discussed. Significance of the predominant role played by temperature is considered.


1982 ◽  
Vol 39 (9) ◽  
pp. 1229-1234 ◽  
Author(s):  
J. W. Hilton ◽  
J. L. Atkinson ◽  
S. J. Slinger

The maximum tolerable dietary level, digestion, and metabolism of D-glucose (cerelose) were investigated in rainbow trout (Salmo gairdneri) reared on practical diets containing optimum protein and lipid levels at two different water temperatures for 12 wk. Liver glycogen levels (LG) and liver:body weight ratios (LB) initially increased with increasing dietary glucose, but leveled off above 10–15% glucose. The plateauing of LB and LG was consistent with the plateauing of liver glucose-6-phosphate dehydrogenase activity (G6PD) and probably overall hexose monophosphate shunt (HMS) activity at high dietary levels of glucose. This indicates that there may be an optimum ratio of digestible carbohydrate to lipid in salmonid diets. LG and LB tended to be higher in trout reared upon the same dietary glucose level in fish reared at 11 °C as compared with those at 15 °C. This may have been caused by increased activity of the HMS as indicated by increased activity of liver G6PD in fish acclimated to 11 °C as compared to trout reared at 15 °C on the same dietary glucose level (when assayed at 15 °C). The digestion coefficient of glucose was uniformly high (96–99%) and not affected by either dietary glucose level (up to 25% of the diet) or water temperature (11 or 15 °C). The maximum tolerable level of glucose in salmonid diets appears to be dependent upon the protein, lipid, and overall energy content of the diet.Key words: trout, glucose digestion, glucose metabolism, maximum tolerable levels, water temperature, dietary energy


Sign in / Sign up

Export Citation Format

Share Document