Estimating food availability for larval dragonflies: a cautionary note

1986 ◽  
Vol 64 (4) ◽  
pp. 1036-1038 ◽  
Author(s):  
Robert L. Baker

Fecal pellets produced by larvae of Enallagma ebrium and Ischnura verticalis given ad libitum feedings of enchytraeid worms were heavier than pellets produced by larvae given ad libitum feedings of Daphnia magna. Dependence of pellet weight on food type has marked implications for indices of food limitation for larval dragonflies.

2015 ◽  
Vol 63 (1) ◽  
pp. 12 ◽  
Author(s):  
Alexandra M. Leslie ◽  
Mathew Stewart ◽  
Elizabeth Price ◽  
Adam J. Munn

Daily torpor, a short-term reduction in body temperature and metabolism, is an energy-saving strategy that has been interpreted as an adaptation to unpredictable resource availability. However, the effect of food-supply variability on torpor, separately from consistent food restriction, remains largely unexamined. In this study, we investigated the effect of unpredictable food availability on torpor in stripe-faced dunnarts (Sminthopsis macroura). After a control period of ad libitum feeding, dunnarts were offered 65% of their average daily ad libitum intake over 31 days, either as a constant restriction (i.e. as equal amount of food offered each day) or as an unpredictable schedule of feed offered, varied daily as 0%, 30%, 60%, 100% or 130% of ad libitum. Both feeding groups had increased torpor-bout occurrences (as a proportion of all dunnarts on a given day) and torpor-bout frequency (average number of bouts each day) when on a restricted diet compared with ad libitum feeding, but torpor frequency did not differ between the consistently restricted and unpredictably restricted groups. Most importantly, torpor occurrence and daily bout frequency by the unpredictably restricted group appeared to change in direct association with the amount of food offered on each day; torpor frequency was higher on days of low food availability. Our data do not support the interpretation that torpor is a response to unpredictable food availability per se, but rather that torpor allowed a rapid adjustment of energy expenditure to manage daily fluctuations in food availability.


Hydrobiologia ◽  
1994 ◽  
Vol 287 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Fernando Martínez-Jerónimo ◽  
Rafael Villaseñor ◽  
Guillermo Rios ◽  
Félix Espinosa

1977 ◽  
Vol 7 (4) ◽  
pp. 343-349 ◽  
Author(s):  
ROBERT W. WINNER ◽  
THEODORE KEELING ◽  
ROBERT YEAGER ◽  
MICHAEL P. FARRELL

2014 ◽  
Author(s):  
James J Roper ◽  
André M. X. Lima ◽  
Angélica M. K. Uejima

Food limitation may interact with nest predation and influence nesting patterns, such as breeding season length and renesting intervals. If so, reproductive effort should change with food availability. Thus, when food is limited, birds should have fewer attempts and shorter seasons than when food is not limiting. Here we experimentally test that increased food availability results in increased reproductive effort in a fragmented landscape in the Variable Antshrike (Thamnophilus caerulescens) in southern Brazil. We followed nesting pairs in five natural fragments (4, 23, 24, 112, 214 ha) in which food was supplemented for half of those pairs, beginning with the first nest. Nest success in the largest (214 ha) fragment was 59%, compared to 5% in the 112 ha fragment and no nest was successful in the smallest (24 ha) fragment. Birds were seen, but evidence of nesting was never found in the two smallest fragments. Pairs with supplemented food were more likely to increase clutch size from two to three eggs, tended to renest sooner (20 d on average) than control pairs. Also, fragment size interacted with breeding and pairs in the largest fragment had greater daily nest survival rates, and so nests tended to last longer, and so these pairs had fewer nesting attempts than those in the 112 ha fragment while more than those in the smallest fragment with nesting (24 ha). Clearly, pairs increased their reproductive effort when food was supplemented in comparison to control pairs and fragment size seems to influence both predation risk and food abundance.


2021 ◽  
Author(s):  
◽  
Schür Christoph

The last century saw the widespread adoption of plastic materials throughout nearly every aspect of our lives. Plastics are synthetic polymers that are made up of monomer chains. The properties of the monomer in conjunction with chemical additives allow plastics to have a sheer endless variety of features and use cases. They are cheap, lightweight, and extremely durable. Plastic materials are often engineered for single-use and in conjunction with high production volumes and insufficient waste management and recycling across the globe, this leads to a large number of plastics entering the environment. Marine ecosystems are considered sinks. However, freshwater ecosystems as entry pathways are highly affected by plastic waste as well. Throughout the past decade, the impact of plastic waste on human and environmental health has received a lot of attention from the ecotoxicological community as well as the public. Small plastic fragments (< 1 mm called microplastics) are a large part of this emerging field of research. Within this, the water flea Daphnia magna is probably the most common organism that is used to assess microplastics toxicity. As a filter-feeding organism, it indiscriminately ingests particles from the water column and is thus highly susceptible to microplastics. For this thesis, we identified some gaps in the available data on the ecotoxicity of microplastics to daphnids. To illuminate some of those gaps the present thesis was aimed at five main aspects: (1) Tissue translocation of spherical microplastics in Daphnia magna (2) Investigation of the toxicity of irregularly shaped microplastics (3) Multigenerational and population effects of microplastics (4) Comparison of the toxicity of microplastics and natural particles (5) Effects of particle-aging on microplastics toxicity The thesis is comprised of three peer-reviewed articles and one so-far unpublished study as “additional results”. The first study was aimed at understanding tissue translocation of spherical microplastics to lipid storage droplets of daphnids. The crossing of biological membranes is discussed as a prerequisite to eliciting tissue damage and an inflammatory response. Previously, researchers reported the translocation of fluorescently labeled spherical microplastics to lipid storage droplets of daphnids, even though no plausible biological mechanism to explain this occurrence. Therefore, in order to learn more about this process and potentially illuminate the mechanism we replicated the study. We were able to observe a fluorescence signal inside the lipid droplets only after increasing the exposure concentrations. Nonetheless, it appeared to be independent of particles. This led to the hypothesis, that the lipophilic fluorescent dye uncoupled from the particles and subsequently accumulated in lipid storage droplets. The hypothesis was further confirmed through an additional experiment with a silicone-based passive sampling device showing that the fluorescence occurred both independent of particles and digestive processes. Accordingly, we concluded that the reported findings were a microscopic artifact caused by the uncoupling of the dye from the particles. Therefore, a fluorescence signal alone is not a sufficient proxy to assume that particles have translocated. It needs to be coupled with additional methods to ensure that the observation is indeed caused by the translocation of particles. It is still unclear whether the toxicity profile of microplastics is different from that of naturally occurring particles or if they are “just another particle”, as there are innumerable amounts in the natural environment surrounding an organism. The goal of the second study was to compare the toxicity of irregularly shaped polystyrene microplastics to that of the natural particle kaolin. The environment is full of natural non-food particles that daphnids ingest more or less indiscriminately and therefore are well adapted to deal with. Daphnids have a short generation time and usually experience food limitation in nature. Therefore, short-term studies only looking at acute toxicity with ad libitum food availability are not representative of the exposure scenario in nature. For a more realistic scenario, we, therefore, used a four-generation multigenerational design under food limitation to investigate how effects translate from one generation to the next. We observed concentration-dependent effects of microplastics but not of natural particles on mortality, reproduction, and growth. Some of the effects increased from generation to generation, leading to the extinction of two treatment groups. Here, microplastics were more toxic than natural particles. At least part of this difference can be explained by physical properties leading to the quick sedimentation of the kaolin, while microplastics remained in the water column. Nonetheless, buoyancy and sedimentation would also affect exposure in the environment and are likely different for most microplastics than for most naturally occurring particle types. ...


2022 ◽  
Vol 12 ◽  
Author(s):  
Elena Gorokhova ◽  
Rehab El-Shehawy

The association between oxidative processes and physiological responses has received much attention in ecotoxicity assessment. In the Baltic Sea, bloom-forming cyanobacterium Nodularia spumigena is a significant producer of various bioactive compounds, and both positive and adverse effects on grazers feeding in cyanobacteria blooms are reported. To elucidate the effect mechanisms and species sensitivity to the cyanobacteria-dominating diet, we exposed two Baltic copepods, Acartia bifilosa and Eurytemora affinis, to a diet consisting of toxin-producing cyanobacteria N. spumigena and a high-quality food Rhodomonas salina at 0–300 μg C L−1; the control food was R. salina provided as a monodiet at the same food levels. The subcellular responses to food type and availability were assayed using a suite of biomarkers – antioxidant enzymes [superoxide dismutases (SOD), catalase (CAT), and glutathione S-transferases (GST)] and acetylcholinesterase (AChE). In parallel, we measured feeding activity using gut content (GC) assayed by real-time PCR analysis that quantified amounts of the prey DNA in copepod stomachs. As growth and reproduction endpoints, individual RNA content (a proxy for protein synthesis capacity), egg production rate (EPR), and egg viability (EV%) were used. In both toxic and nontoxic foods, copepod GC, RNA content, and EPR increased with food availability. Antioxidant enzyme activities increased with food availability regardless of the diet type. Moreover, CAT (both copepods), SOD, and GST (A. bifilosa) were upregulated in the copepods receiving cyanobacteria; the response was detectable when adjusted for the feeding and/or growth responses. By contrast, the diet effects were not significant when food concentration was used as a co-variable. A bimodal response in AChE was observed in A. bifilosa feeding on cyanobacteria, with up to 52% increase at the lower levels (5–25 μg C L−1) and 32% inhibition at the highest food concentrations. These findings contribute to the refinement of biomarker use for assessing environmental stress and mechanistic understanding of cyanobacteria effects in grazers. They also suggest that antioxidant and AChE responses to feeding activity and diet should be accounted for when using biomarker profiles in field-collected animals in the Baltic Sea and, perhaps other systems, where toxic cyanobacteria are common.


2016 ◽  
Vol 12 (9) ◽  
pp. 20160471 ◽  
Author(s):  
Kristian M. Forbes ◽  
Tapio Mappes ◽  
Tarja Sironen ◽  
Tomas Strandin ◽  
Peter Stuart ◽  
...  

Trade-offs in the allocation of finite-energy resources among immunological defences and other physiological processes are believed to influence infection risk and disease severity in food-limited wildlife populations. However, this prediction has received little experimental investigation. Here we test the hypothesis that food limitation impairs the ability of wild field voles ( Microtus agrestis ) to mount an immune response against parasite infections. We conducted a replicated experiment on vole populations maintained in large outdoor enclosures during boreal winter, using food supplementation and anthelmintic treatment of intestinal nematodes. Innate immune responses against intestinal parasite infections were compared between food-supplemented and non-supplemented voles. Voles with high food availability mounted stronger immune responses against intestinal nematode infections than food-limited voles. No food effects were seen in immune responses to intracellular coccidian parasites, possibly owing to their ability to avoid activation of innate immune pathways. Our findings demonstrate that food availability constrains vole immune responses against nematode infections, and support the concept that spatio-temporal heterogeneity in food availability creates variation in infectious disease susceptibility.


Sign in / Sign up

Export Citation Format

Share Document