Population dynamics of the helminth community from migrating blue-winged teal: loss of helminths without replacement on the wintering grounds

1986 ◽  
Vol 64 (8) ◽  
pp. 1765-1773 ◽  
Author(s):  
B. M. Wallace ◽  
Danny B. Pence

The main and interactive effects of host and seasonal factors on abundance of 22 common helminth species from fall and spring migratory blue-winged teal collected in the Texas Panhandle were examined. Although abundances of many common helminth species were greater in immature than adult birds just off the breeding grounds, fall-collected adults had higher abundances of most helminth species than did both juvenile and adult birds from the wintering grounds in Mexico. While total abundance of helminths declined on the wintering grounds to only 54% of that from fall-collected birds, overall species composition and abundances of some helminth species were equivalent in the host population throughout the year, regardless of changing geographic locality and migratory stress. The helminth fauna acquired in the northern latitude breeding grounds was not replaced by an ecologically equivalent fauna in the southern latitude wintering grounds. Only one species, Corynosoma constrictum, was lost without replacement during the wintering period. Schistorphus cucullatus, a parasite of the Raillidae, occurred in birds on the wintering grounds but was lost without replacement on the breeding grounds. Thus, most of these helminth species were capable of ubiquitous transmission across the range of this host and (or) infections of the respective species persisted through the migratory stress period. This study suggests that diversity in the helminth community of a migratory host species over its entire geographic range may largely result from differences between separate populations that have become isolated over time as a result of establishing specific migratory corridors, rather than from the short-term effects of environmental differences between regions representing the extremes of the overall migratory range (breeding and wintering grounds).

Parasitology ◽  
2011 ◽  
Vol 138 (9) ◽  
pp. 1176-1182 ◽  
Author(s):  
C. A. RAUQUE ◽  
R. A. PATERSON ◽  
R. POULIN ◽  
D. M. TOMPKINS

SUMMARYThere is a gap in our understanding of the relative and interactive effects of different parasite species on the same host population. Here we examine the effects of the acanthocephalan Acanthocephalus galaxii, an unidentified cyclophyllidean cestode, and the trematodes Coitocaecum parvum and Microphallus sp. on several fitness components of the amphipod Paracalliope fluviatilis, using a combination of infection surveys and both survival and behavioural trials. In addition to significant relationships between specific parasites and measures of amphipod survival, maturity, mating success and behaviour, interactions between parasite species with respect to amphipod photophilia were also significant. While infection by either A. galaxii or C. parvum was associated with increased photophilia, such increases were negated by co-infection with Microphallus sp. We hypothesize that this is due to the more subtle manipulative effect of A. galaxii and C. parvum being impaired by Microphallus sp. We conclude that the low frequency at which such double infections occur in our sampled population means that such interactions are unlikely to be important beyond the scale of the host individual. Whether or not this is generally true, implying that parasitological models and theory based on single parasite species studies do generally hold, requires cross-species meta-analytical studies.


2018 ◽  
Vol 160 (1) ◽  
pp. 239-248 ◽  
Author(s):  
Karsten Laursen ◽  
Anders Pape Møller ◽  
Markus Öst

1996 ◽  
Vol 26 (4) ◽  
pp. 670-681 ◽  
Author(s):  
S.B. McLaughlin ◽  
D.J. Downing

Seasonal growth patterns of mature loblolly pine (Pinustaeda L.) trees over the interval 1988–1993 have been analyzed to evaluate the effects of ambient ozone on growth of large forest trees. Patterns of stem expansion and contraction of 34 trees were examined using serial measurements with sensitive dendrometer band systems. Study sites, located in eastern Tennessee, varied significantly in soil moisture, soil fertility, and stand density. Levels of ozone, rainfall, and temperature varied widely over the 6-year study interval. Regression analysis identified statistically significant influences of ozone on stem growth patterns, with responses differing widely among trees and across years. Ozone interacted with both soil moisture stress and high temperatures, explaining 63% of the high frequency, climatic variance in stem expansion identified by stepwise regression of the 5-year data set. Observed responses to ozone were rapid, typically occurring within 1–3 days of exposure to ozone at ≥40 ppb and were significantly amplified by low soil moisture and high air temperatures. Both short-term responses, apparently tied to ozone-induced increases in whole-tree water stress, and longer term cumulative responses were identified. These data indicate that relatively low levels of ambient ozone can significantly reduce growth of mature forest trees and that interactions between ambient ozone and climate are likely to be important modifiers of future forest growth and function. Additional studies of mechanisms of short-term response and interspecies comparisons are clearly needed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jay J. Minuti ◽  
Charlee A. Corra ◽  
Brian S. Helmuth ◽  
Bayden D. Russell

The ability of an organism to alter its physiology in response to environmental conditions offers a short-term defense mechanism in the face of weather extremes resulting from climate change. These often manifest as multiple, interacting drivers, especially pH and temperature. In particular, decreased pH can impose constraints on the biological mechanisms which define thermal limits by throwing off energetic equilibrium and diminishing physiological functions (e.g., in many marine ectotherms). For many species, however, we do not have a detailed understanding of these interactive effects, especially on short-term acclimation responses. Here, we investigated the metabolic plasticity of a tropical subtidal gastropod (Trochus maculatus) to increased levels of CO2 (700 ppm) and heating (+3°C), measuring metabolic performance (Q10 coefficient) and thermal sensitivity [temperature of maximum metabolic rate (TMMR), and upper lethal temperature (ULT)]. Individuals demonstrated metabolic acclimation in response to the stressors, with TMMR increasing by +4.1°C under higher temperatures, +2.7°C under elevated CO2, and +4.4°C under the combined stressors. In contrast, the ULT only increased marginally in response to heating (+0.3°C), but decreased by −2.3°C under CO2, and −8.7°C under combined stressors. Therefore, although phenotypic plasticity is evident with metabolic acclimation, acute lethal temperature limits seem to be less flexible during short-term acclimation.


2019 ◽  
Vol 19 (2) ◽  
pp. 195-201
Author(s):  
Chris M. Hall ◽  
Magnar G. Johnsen

AbstractA hypothesis is proposed wherein changes in the Earth's magnetic field affect the migratory paths of snow buntings (Plectrophenax nivalis), and in particular from wintering grounds in the Russian/Ukrainian steppes to breeding grounds on Svalbard and with a typical stopover in Finnmark in northern Norway. If one were to assume ignorance of the secular movement of the magnetic north pole approximately 1500 km northwards between 1908 and 2020, the magnetoreceptor contribution to snow buntings' navigation would result in winter-to-summer migratory paths progressively further to the East. In turn, this could be a contributing factor to declining populations in Finnmark and favouring a more frequent flightpath over the Kola Peninsula. On the other hand, short-term perturbations in the magnetic field (i.e. induced by solar activity) and therefore existing for a relatively small proportion of the flight time (if at all) for the individual migrations legs seem unlikely to influence the stopover locations significantly. Even so, these space-weather induced variations cannot be disregarded, particularly for success in reaching Svalbard.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jennifer N Phillips ◽  
Madhusudan Katti

Abstract Many animals learn to produce acoustic signals that are used to attract mates and defend territories. The structure of these signals can be influenced by external features of the environment, including the anthropogenic soundscape. In many sedentary species, habitat features and soundscape appears to influence the cultural evolution of songs, often with tradeoffs for better transmission over sexually selected song structure. However, none have investigated whether noise on the wintering grounds affects song structure, which for long-distance migrants may result in an acoustic ‘mismatch’ when returning to a breeding ground. This study investigates urban noise effects on song structure in a long-distance migrant, Zonotrichia leucophrys gambelii, on the wintering grounds in the Fresno Clovis Metropolitan Area and in outlying non-urban areas. Songs and background noise levels were recorded concurrently, and song measurements of frequency and duration were examined differences across noise levels and habitats . We found that the buzz and trill decrease in bandwidth in the presence of noise. The length of the whistle and buzz portion of the song also tends to decreases with noise in urban habitats. This trend toward short, pure tones in noisy areas may transmit better in noisy urban winter habitats, but may not be adaptive on quieter breeding grounds. We suggest that future studies should consider whether winter auditory feedback and song learning environments have consequences for song crystallization and breeding success for long-distance migrants.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jason M. Garvon ◽  
Alan M. Fedynich ◽  
Markus J. Peterson ◽  
Danny B. Pence

The influence of spatially distinct host subpopulations on helminth community structure and pattern was examined in a migratory avian host species. Forty helminth species represented by 24,082 individuals were collected from 184 blue-winged teal (Anas discors; BWT) from 2 primary migratory corridors in Florida (eastern migratory corridor; EMC) and Louisiana and Texas (western migratory corridor; WMC). Mean species richness was greater in BWT from the WMC (x¯±S.E=10.2 ± 0.3species) than the EMC (8.6 ± 0.2). The helminth community from the WMC had higher abundances of 6 common/intermediate species. Corridor helminth communities were similar in species composition but less similar when incorporating abundances of those species. Overlapping distributions of phylogenetically related host species that share generalist helminth species across ecologically similar habitats seem to mitigate the isolating mechanisms that are necessary for the distinct coevolutionary pathways to develop between adjacent corridors.


2017 ◽  
Vol 44 (11) ◽  
pp. 1075 ◽  
Author(s):  
Michael J. Aspinwall ◽  
Vinod K. Jacob ◽  
Chris J. Blackman ◽  
Renee A. Smith ◽  
Mark G. Tjoelker ◽  
...  

The effects of elevated CO2 on the short-term temperature response of leaf dark respiration (R) remain uncertain for many forest tree species. Likewise, variation in leaf R among populations within tree species and potential interactive effects of elevated CO2 are poorly understood. We addressed these uncertainties by measuring the short-term temperature response of leaf R in 15 provenances of Eucalyptus grandis W. Hill ex Maiden from contrasting thermal environments grown under ambient [CO2] (aCO2; 400 µmol mol–1) and elevated [CO2] (640 µmol mol–1; eCO2). Leaf R per unit area (Rarea) measured across a range of temperatures was higher in trees grown in eCO2 and varied up to 104% among provenances. However, eCO2 increased leaf dry mass per unit area (LMA) by 21%, and when R was expressed on a mass basis (i.e. Rmass), it did not differ between CO2 treatments. Likewise, accounting for differences in LMA among provenances, Rmass did not differ among provenances. The temperature sensitivity of R (i.e. Q10) did not differ between CO2 treatments or among provenances. We conclude that eCO2 had no direct effect on the temperature response of R in E. grandis, and respiratory physiology was similar among provenances of E. grandis regardless of home-climate temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document