Differential effects of diurnal and continuous illumination regimes on melanophores and xanthophores of winter flounder, Pseudopleuronectes americanus

1987 ◽  
Vol 65 (5) ◽  
pp. 1140-1143 ◽  
Author(s):  
D. Burton

The melanophores and xanthophores of Pseudopleuronectes americanus display different adaptive capacities to a white background under continuous (1 week) illumination compared with an equivalent period under diurnal, alternating light (12 h) and dark (12 h) photoperiods. Under the repeated diurnal photocycles on white, melanosomes partly disperse during dark photoperiods, but there is cumulative melanosome aggregation during successive light photoperiods that is interpreted as a slow physiological summation. Consequently, there is no significant difference in the final degree of aggregation attained on a white background on completion of either illumination protocol. In contrast, xanthosomes attain a high degree of aggregation during white background adaptation under continuous illumination, but do not display slow "summation" of pigment aggregation in response to the diurnal light photoperiods. The differences between melanosome and xanthosome aggregation under these photoperiod regimes are discussed in relation to the previously established types of balance between neural and humoral systems controlling flounder melanophores and xanthophores.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
X I Wang ◽  
Y Cheng ◽  
P Rao ◽  
L Wang

Abstract Introduction Optogenetics is a low-invasive, flexible and highly selective intervention that enables electrical excitation with light on myocardium overexpressing light-sensitive proteins. Optical illumination can control the simultaneous exciting of the whole myocardium under the spot, which is more conducive to recovery from electrical disturbance to sinus rhythm. Purpose We explored optogenetic defibrillation for different illumination parameters how to affect defibrillation rates and the possible mechanism of continuous illumination defibrillation. Methods Systemic delivery via right jugular vein injection of (AAV9-CAG-hChR2(H134R)-mCherry) were performed in juvenile SD rats to achieve the light sensitive protein Channelrhodopsin-2 (ChR2) transfer throughout the whole heart. We intubated and ventilated rats, opened chest and recorded the ECG. After ligation of the left anterior descending coronary artery, ventricular arrhythmia was induced by electrical burst stimulation (10v, 50Hz, 2s). Cardiac epicardium illumination with 470nm blue laser was performed to investigate the effects of optogenetic defibrillation and its underlying mechanism. Every heart accepted 30 pulses of 20ms duration on 8Hz to test the light intensity threshold for 1:1 capture. Different illumination modes of multiple light intensity (2,4,8,10,20 times threshold intensity), pulse duration (20, 50, 200, 500 and 1000ms) and illumination position (RV apex, RV, RVOT, septum, LV) were applied in each attempt for 4 repetitions with 1 s interval. Results We demonstrated that ventricular arrhythmias could be terminated by illumination of the right ventricle at 20 times threshold intensity in 1s (figure A) with the successful defibrillation rate of 95±2.673% (mean ±SEM; N=7). Herein, the successful optogenetic defibrillation rate was strongly depending on light intensity (N=5, n=50 episodes, p=0.0118) and duration of illumination (N=5, n=50 episodes, p<0.0001) (figure B.C). Notably when there were higher intensity and longer pulse duration, the higher defibrillation rate appeared. There was no significant difference in the defibrillation rate among different illumination positions (N=5, n=25episodes per position, p=0.1177) (figure D). To explore the underlying mechanism of optogenetic defibrillation, we performed the same illumination mode during sinus rhythm in 2 rats (figure E. F. G). We observed that higher light intensity and longer pulse duration were more conducive to induce an episode of higher frequency focal excitement. Views of optogenetic defibrillation Conclusions We demonstrated that optogenetic defibrillation is a highly effective intervention and the possible mechanism is partly attributed to overdrive suppression. We believe that optogenetic approach is potentially to be translated into more efficient and pain-free clinical termination of ventricular arrhythmia. Acknowledgement/Funding The national natural science foundation of China (81772044)


Author(s):  
Nisha Patidar ◽  
Nitya Vyas ◽  
Shanoo Sharma ◽  
Babita Sharma

Abstract Objective Carbapenems are last resort antibiotics for multidrug-resistant Enterobacteriaceae. However, resistance to carbapenem is increasing at an alarming rate worldwide leading to major therapeutic failures and increased mortality rate. Early and effective detection of carbapenemase producing carbapenem-resistant Enterobacteriaceae (CRE) is therefore key to control dissemination of carbapenem resistance in nosocomial as well as community-acquired infection. The aim of present study was to evaluate efficacy of Modified strip Carba NP (CNP) test against Modified Hodge test (MHT) for early detection of carbapenemase producing Enterobacteriaceae (CPE). Material and Methods Enterobacteriaceae isolated from various clinical samples were screened for carbapenem resistance. A total of 107 CRE were subjected to MHT and Modified strip CNP test for the detection of CPE. Statistical Analysis It was done on Statistical Package for the Social Sciences (SPSS) software, IBM India; version V26. Nonparametric test chi-square and Z-test were used to analyze the results within a 95% level of confidence. Results Out of 107 CRE, 94 (88%) were phenotypically confirmed as carbapenemase producer by Modified strip CNP test and 46 (43%) were confirmed by Modified Hodge Test (MHT). Thirty-eight (36%) isolates showed carbapenemase production by both MHT and CNP test, 56 isolates (52%) were CNP test positive but MHT negative, eight (7%) isolates were MHT positive but CNP test negative and five (5%) isolates were both MHT and CNP test negative. There is statistically significant difference in efficiency of Modified CNP test and MHT (p < 0.05). Conclusion Modified strip CNP test is simple and inexpensive test which is easy to perform and interpret and gives rapid results in less than 5 minutes. It has high degree of sensitivity and specificity. Modified strip CNP test shows significantly higher detection capacity for carbapenemase producers as compared with MHT.


1971 ◽  
Vol 28 (8) ◽  
pp. 1153-1165 ◽  
Author(s):  
V. S. Kennedy ◽  
D. H. Steele

Monthly samples of winter flounder taken in Long Pond from November 1962 to October 1963 indicated that the flounder moved into deeper water (7–10 m) during the summer and returned to shallow water (1–2 m) from September to June. These movements corresponded to the end of the spawning season and the ripening of the gonads respectively. Spawning occurred from March until early June, most of it in May and early June. Most males were mature at age 6 and most females at age 7. Fifty percent of the males and females were mature at 21 and 25 cm respectively. The growth rates of the males and females were similar until the age of 8, after which the females apparently outgrew the males. Early growth and fecundity were similar to those reported for other areas. No feeding took place in December or January but the flounder fed in March and continued to feed throughout the summer; food intake decreased in the fall. They were omnivorous and the type of food eaten varied with the locality. Polychaetes, plant material, and molluscs were the most common food items throughout the year. Capelin eggs and fish remains were found only during a few months of the year but were eaten in great quantities.


Sign in / Sign up

Export Citation Format

Share Document