Risk taking in parasitized sticklebacks under threat of predation: effects of energetic need and food availability

1988 ◽  
Vol 66 (11) ◽  
pp. 2360-2367 ◽  
Author(s):  
Jean-Guy J. Godin ◽  
Cathryn D. Sproul

Threespine sticklebacks (Gasterosteus aculeatus L.) parasitized by the cestode Schistocephalus solidus (Miiller) have a greater need for energy than uninfected fish, and therefore should be hungrier and more willing to compromise safety from predation for foraging gains. We hypothesized that the magnitude of this trade-off is directly related to the fish's parasite load (i.e., energy requirement) and food abundance. After being frightened by a model heron, sticklebacks fled shorter distances, remained motionless and cryptic for shorter periods, returned sooner to forage in a food patch near the predator, and remained active longer in the patch with increasing parasite load. The correlations of these responses with fish parasite load were significant most consistently at the highest food density tested, and suggest that the fish were taking a greater risk of predation with an increasing level of parasitic infection, particularly when the potential energetic gain from foraging was high. On average, the fish stayed longer in the food patch near predation hazard and consumed more food during this period with increasing prey density in the patch. However, individual feeding rate was independent of parasite load and food density, suggesting that the parasite places a constraint on the fish's foraging effort.

FACETS ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Joacim Näslund ◽  
Leo Pettersson ◽  
Jörgen I Johnsson

The behavioural response of animals to predation risk commonly depends on the behaviour of potential predators. Here, we report an experiment investigating effects of predator model (a life-like wooden trout model) distance and movement on the behaviour of three-spined sticklebacks Gasterosteus aculeatus L. in a standardized experimental setting. When the predator model was immobile, the behaviour of the sticklebacks could, in general, not be clearly distinguished from a no-predator control treatment. When moving the predator 41 cm towards the stickleback, clear anti-predator behaviours were observed. However, behavioural expression depended on the distance to the predator. At the two farthest distances (approaching from 129 to 88 cm and from 170 to 129 cm), the sticklebacks approached the predator and spent little time freezing. At the two closest distances (approaching from 88 to 47 cm and from 47 to 6 cm), the sticklebacks increased the distance to the predator model and froze their movements. These results suggest that the closest-distance groups showed avoidance behaviour, whereas the farthest-distance groups instead appeared to start inspecting the potential predator. This provides evidence for conditional anti-predator behaviour and highlights the importance of considering distance to, and movement of predator models when interpreting data from standardized behavioural trials.


2021 ◽  
Vol 75 (4) ◽  
Author(s):  
Hannah E. A. MacGregor ◽  
Aislinn Cottage ◽  
Christos C. Ioannou

Abstract Consistent inter-individual variation in behaviour within a population, widely referred to as personality variation, can be affected by environmental context. Feedbacks between an individual’s behaviour and state can strengthen (positive feedback) or weaken (negative feedback) individual differences when experiences such as predator encounters or winning contests are dependent on behavioural type. We examined the influence of foraging on individual-level consistency in refuge use (a measure of risk-taking, i.e. boldness) in three-spined sticklebacks, Gasterosteus aculeatus, and particularly whether changes in refuge use depended on boldness measured under control conditions. In the control treatment trials with no food, individuals were repeatable in refuge use across repeated trials, and this behavioural consistency did not differ between the start and end of these trials. In contrast, when food was available, individuals showed a higher degree of consistency in refuge use at the start of the trials versus controls but this consistency significantly reduced by the end of the trials. The effect of the opportunity to forage was dependent on behavioural type, with bolder fish varying more in their refuge use between the start and the end of the feeding trials than shyer fish, and boldness positively predicted the likelihood of feeding at the start but not at the end of the trials. This suggests a state-behaviour feedback, but there was no overall trend in how bolder individuals changed their behaviour. Our study shows that personality variation can be suppressed in foraging contexts and a potential but unpredictable role of feedbacks between state and behaviour. Significance statement In this experimental study, we examined how foraging influences consistency in risk-taking in individual three-spined sticklebacks. We show that bolder individuals become less consistent in their risk-taking behaviour than shyer individuals during foraging. Some bolder individuals reinforce their risk-taking behaviour, suggesting a positive feedback between state and behaviour, while others converge on the behaviour of shyer individuals, suggesting a negative feedback. In support of a role of satiation in driving negative feedback effects, we found that bolder individuals were more likely to feed at the start but not at the end of the trials. Overall, our findings suggest that foraging can influence personality variation in risk-taking behaviour; however, the role of feedbacks may be unpredictable.


Zoomorphology ◽  
2020 ◽  
Author(s):  
Harald Ahnelt ◽  
David Ramler ◽  
Maria Ø. Madsen ◽  
Lasse F. Jensen ◽  
Sonja Windhager

AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.


1989 ◽  
Vol 67 (6) ◽  
pp. 1599-1602 ◽  
Author(s):  
Vital Boulé ◽  
Gerard J. Fitzgerald

Female threespine sticklebacks (Gasterosteus aculeatus) spend only 9–15 days on the spawning grounds, an intertidal salt marsh at Isle Verte, Quebec, during a 2-month breeding season. Individuals average only one spawning. However, in the laboratory they lay clutches of several hundred eggs every 3–5 days for several months. We designed laboratory experiments to determine (i) whether daily temperature fluctuations similar to those encountered in the marsh affect reproduction (number of clutches, number of eggs per clutch, and size of eggs) and (ii) whether the amplitude of the fluctuations encountered by the fish affects reproduction. We compared the reproduction of females held in fluctuating temperatures with that of females kept at 20 °C. Fish kept under fluctuating conditions produced more eggs per clutch but had longer interspawning intervals than those at 20 °C. Total seasonal egg production and egg size did not differ between the two groups. Fish in fluctuating temperatures survived longer and were in better condition than those at 20 °C. We conclude that the amplitude of the fluctuations is less important than mean temperature in determining reproductive performance. Fluctuating temperatures on the spawning grounds are not responsible for the short residency there.


1998 ◽  
Vol 76 (4) ◽  
pp. 680-688 ◽  
Author(s):  
Christophe Garenc ◽  
Frederick G Silversides ◽  
Helga Guderley

Full-sib heritabilities of burst-swimming capacity and its enzymatic correlates were calculated in juvenile threespine sticklebacks, Gasterosteus aculeatus, from 25 families raised under constant laboratory conditions. Variation among families in burst-swimming performance, enzyme activities, body size, and condition of the juveniles was considerable. Estimates of full-sib heritabilities of absolute and relative burst-swimming performance decreased during ontogenesis, as they were higher for 2-month-old than for 3.6-month-old sticklebacks. This decline may reflect a decrease in the importance of paternal effects with age, as well as an increase in intrafamilial variability due to the existence of feeding or social hierarachies. Enzymatic correlates of burst-swimming performance measured in 3.6-month-old sticklebacks had higher full-sib heritabilities than burst-swimming performance itself, with the highest values found for cytochrome c oxidase, followed by lactate dehydrogenase and then phosphofructokinase and creatine phosphokinase. These results suggest that genetic factors may have a considerable influence upon burst-swimming performance and muscle metabolic capacities of juvenile threespine sticklebacks, but that this influence may be tempered by biotic interactions.


2021 ◽  
Author(s):  
Tamal Roy ◽  
Robert Arlinghaus

AbstractSize-selective mortality is common in fish populations and can operate either in a positive size-selective fashion or be negatively size-selective. Through various mechanisms (like genetic correlations among behaviour and life-history traits or direct selection on behaviour co-varying with growth rate or size-at-maturation), both positive- and negative size-selection can result in evolutionary changes in behavioural traits. Theory suggests that size-selection alone favours boldness, but little experimental evidence exists about whether and to what extent size-selection can trigger its evolution. Here we investigated the impact of size-selective mortality on boldness across ontogeny using three experimental lines of zebrafish (Danio rerio) generated through positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations. We measured risk-taking during feeding (boldness) under simulated aerial predation threat and in presence of a live cichlid. We found that boldness decreased with ontogenetic age under aerial predation threat, and the small-harvested line was consistently bolder than controls. Collective personality emerged post larval stages among the selection lines. In presence of a cichlid, the large-harvested line was bolder at the highest risk of predation. The large-harvested line showed higher variability and plasticity in boldness across life stages and predation risks. Collectively, our results demonstrate that size-selective harvesting may evolutionarily alter risk-taking tendency. Size-selection alone favours boldness when selection acts on small fish. Selection typical of fisheries operating on large fish favours boldness at the highest risk of predation and increases behavioural variability and plasticity. There was no evidence for positive size-selection favouring evolution of shyness.


Sign in / Sign up

Export Citation Format

Share Document