Home ranges of free-ranging cats (Felis catus) in Brooklyn, New York

1989 ◽  
Vol 67 (1) ◽  
pp. 178-181 ◽  
Author(s):  
Carol Haspel ◽  
Robert E. Calhoon

Home range size is stable among free-ranging cats in Brooklyn, New York. Marked male and female cats had mean home ranges of 2.6 (95% CI, 2.38–2.87) and 1.7 ha (95% CI, 1.57–1.98), respectively, as estimated by the population utilization distribution. Males had significantly larger home ranges, used the perimeter of their ranges more, and had greater variability in home range size than females. Gender differences in body weight accounted for observed differences in home range size; the seeking of estrous females by males could not account for differences in male and female home ranges. The availability of garbage or abandoned buildings, neighborhood, season, or experimental supplementary feeding did not influence home range size.

2009 ◽  
Vol 87 (11) ◽  
pp. 1052-1060 ◽  
Author(s):  
Adam W. Ferguson ◽  
Nathan A. Currit ◽  
Floyd W. Weckerly

For solitary carnivores a polygynous mating system should lead to predictable patterns in space-use dynamics. Females should be most influenced by resource distribution and abundance, whereas polygynous males should be strongly influenced by female spatial dynamics. We gathered mean annual home-range-size estimates for male and female bobcats ( Lynx rufus (Schreber, 1777)) from previous studies to address variation in home-range size for this solitary, polygynous carnivore that ranges over much of North America. Mean annual home ranges for bobcats (171 males, 214 females) from 29 populations covering the entire north to south and east to west range demonstrated female home-range sizes varied more than an order of magnitude and that, on average, males maintained home ranges 1.65 times the size of females. Male home-range sizes scaled isometrically with female home-range sizes indicating that male bobcats increase their home-range size proportional to female home-range size. Using partial correlation analysis we also detected an inverse relationship between environmental productivity, estimated using the normalized difference vegetation index, and home-range size for females but not males. This study provides one of the few empirical assessments of how polygyny influences home-range dynamics for a wide-ranging carnivore.


2009 ◽  
Vol 123 (2) ◽  
pp. 126 ◽  
Author(s):  
Richard D. Weir ◽  
Alton S. Harestad ◽  
Fraser B. Corbould

We described the size and spatial arrangement of aggregate and seasonal home ranges for 17 radio-tagged resident Fishers (Martes pennanti) that were >1.5 years old in two areas of central British Columbia during 1990-1993 and 1996-2000. We estimated home range size for each Fisher from the 95% isopleth of the utilization distribution generated using a fixed kernel model with smoothing selected by least-squares cross-validation (95% FK). For comparison to previous studies, we also calculated the minimum convex polygon estimate of home range size (MCP) for each animal. The aggregate home ranges (95% FK) of female Fishers (mean = 37.9 km², SD = 18.5, range = 10.5 – 81.2, n = 11) were significantly smaller than those of males (mean = 161.3 km², SD = 100.0, range = 46.0 – 225.2, n = 3; P = 0.019). We observed minor overlap among 95% FK home ranges of Fishers of the same sex, but considerable overlap among home ranges of males and females. Home ranges (95% FK or MCP) that we observed in central British Columbia were larger than those reported elsewhere in North America, particularly for males. We suggest that the distribution of resources for Fishers may occur at lower gross densitiesin central British Columbia than in other portions of the Fisher’s range and that suitable habitat in which Fishers can establish home ranges is not found uniformly across the landscape.


2003 ◽  
Vol 30 (6) ◽  
pp. 593 ◽  
Author(s):  
Simon C. Stirrat

Radio-tagged male and female agile wallabies were tracked in the wet and dry seasons at a site in Darwin, Northern Territory, and home ranges estimated using a kernel-based estimator. Home-range size (95% contour) was larger in the dry season, when food quality was poorer, and males had larger home ranges than females. Core range size (55% contour) did not differ between seasons or sexes. Average male and female home-range sizes in the wet season were 16.6 ha and 11.3 ha respectively. Wet-season core range sizes were 4.8 ha and 3.2 ha respectively. Average male and female home-range sizes in the dry season were 24.6 ha and 15.3 ha respectively, and dry-season core range sizes were 5.1 ha and 4.0 ha respectively. Home-range size for both sexes varied in the two seasons; the smallest and largest female home ranges were 6.3 ha and 24.0 ha respectively, while male home-range size varied from 7.6 ha to 38.2 ha. Seasonal differences in home-range size can be attributed to expansion of night-time foraging areas in the dry season when good-quality food resources were in short supply. Habitat use also differed between seasons. In the dry season more fixes were located in forest areas, particularly in the evening, when wallabies foraged in forest areas for alternate food resources including browse, leaf litter, flowers and fruits of rainforest tree and shrub species. In the wet season, wallabies emerged from day-time resting areas earlier in the afternoon and therefore more wallabies were located in open areas grazing on high-quality herbage in the evening.


The Condor ◽  
2003 ◽  
Vol 105 (4) ◽  
pp. 811-816
Author(s):  
Clint W. Boal ◽  
David E. Andersen ◽  
Patricia L. Kennedy

Abstract We used radio-telemetry to estimate breeding season home-range size of 17 male and 11 female Northern Goshawks (Accipiter gentilis) and combined home ranges of 10 pairs of breeding goshawks in Minnesota. Home-range sizes for male and female goshawks were 2593 and 2494 ha, respectively, using the minimum convex polygon, and 3927 and 5344 ha, respectively, using the 95% fixed kernel. Home ranges of male and female members of 10 goshawk pairs were smaller than combined home-range size of those pairs (mean difference = 3527 ha; 95% CI = 891 to 6164 ha). Throughout the nonbreeding season, the maximum distance from the nest recorded for all but one goshawk was 12.4 km. Goshawks breeding in Minnesota have home ranges similar to or larger than those reported in most other areas. Home-range overlap between members of breeding pairs was typically ≤50%, and both members of breeding pairs were associated with breeding home ranges year round. Goshawk management plans based on estimated home-range size of individual hawks may substantially underestimate the area actually used by a nesting pair. Rango de Hogar y Estatus de Residencia de Individuos de Accipiter gentilis que se Reproducen en Minnesota Resumen. Utilizamos radiotelemetría durante la época reproductiva para estimar el tamaño del rango de hogar de 17 machos y 11 hembras de Accipiter gentilis y los rangos de hogar combinados de 10 parejas reproductivas en Minnesota. Los rangos de hogar de machos y hembras fueron de 2593 y 2494 ha, respectivamente, usando el mínimo polígono convexo, y de 3927 y 5344 ha, respectivamente, usando el “kernel” fijo del 95%. Los rangos de hogar de los miembros machos y hembras de las 10 parejas fueron más pequeños que el tamaño del rango de hogar combinado de dichas parejas (diferencia promedio = 3527 ha; 95% I.C. = 891 a 6164 ha). A través de la época no reproductiva, la distancia máxima desde el nido registrada para todos menos un individuo fue de 12.4 km. Los individuos que se reproducen en Minnesota tienen rangos de hogar similares o mayores que los reportados en la mayoría de otras áreas. La superposición entre los rangos de hogar de miembros de parejas reproductivas fue típicamente ≤50%, y ambos miembros de las parejas estuvieron asociados con rangos de hogar reproductivos a través del año. Los planes de manejo para A. gentilis basados en estimaciones del tamaño del rango de hogar de halcones individuales podrían subestimar sustancialmente el área realmente utilizada por una pareja nidificante.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0120513 ◽  
Author(s):  
Susanna E. Kitts-Morgan ◽  
Kyle C. Caires ◽  
Lisa A. Bohannon ◽  
Elizabeth I. Parsons ◽  
Katharine A. Hilburn

2009 ◽  
Vol 36 (5) ◽  
pp. 422 ◽  
Author(s):  
K. E. Moseby ◽  
J. Stott ◽  
H. Crisp

Control of introduced predators is critical to both protection and successful reintroduction of threatened prey species. Efficiency of control is improved if it takes into account habitat use, home range and the activity patterns of the predator. These characteristics were studied in feral cats (Felis catus) and red foxes (Vulpes vulpes) in arid South Australia, and results are used to suggest improvements in control methods. In addition, mortality and movement patterns of cats before and after a poison-baiting event were compared. Thirteen cats and four foxes were successfully fitted with GPS data-logger radio-collars and tracked 4-hourly for several months. High intra-specific variation in cat home-range size was recorded, with 95% minimum convex polygon (MCP) home ranges varying from 0.5 km2 to 132 km2. Cat home-range size was not significantly different from that of foxes, nor was there a significant difference related to sex or age. Cats preferred habitat types that support thicker vegetation cover, including creeklines and sand dunes, whereas foxes preferred sand dunes. Cats used temporary focal points (areas used intensively over short time periods and then vacated) for periods of up to 2 weeks and continually moved throughout their home range. Aerial baiting at a density of 10 baits per km2 was ineffective for cats because similar high mortality rates were recorded for cats in both baited and unbaited areas. Mortality was highest in young male cats. Long-range movements of up to 45 km in 2 days were recorded in male feral cats and movement into the baited zone occurred within 2 days of baiting. Movement patterns of radio-collared animals and inferred bait detection distances were used to suggest optimum baiting densities of ~30 baits per km2 for feral cats and 5 per km2 for foxes. Feral cats exhibited much higher intra-specific variation in activity patterns and home-range size than did foxes, rendering them a potentially difficult species to control by a single method. Control of cats and foxes in arid Australia should target habitats with thick vegetation cover and aerial baiting should ideally occur over areas of several thousand square kilometres because of large home ranges and long-range movements increasing the chance of fast reinvasion. The use of temporary focal points suggested that it may take several days or even weeks for a cat to encounter a fixed trap site within their home range, whereas foxes should encounter them more quickly as they move further each day although they have a similar home-range size. Because of high intra-specific variability in activity patterns and home-range size, control of feral cats in inland Australia may be best achieved through a combination of control techniques.


Author(s):  
Jordan Clark Rabon ◽  
Cassandra M. V. Nuñez ◽  
Peter Coates ◽  
Mark Ricca ◽  
Tracey N. Johnson

Measurement of physiological responses can reveal effects of ecological conditions on an animal and correlate with demographic parameters. Ecological conditions for many animal species have deteriorated as a function of invasive plants and habitat fragmentation. Expansion of juniper (Juniperus spp.) trees and invasion of annual grasses into sagebrush (Artemisia spp.) ecosystems have contributed to habitat degradation for Greater Sage-Grouse (Centrococercus urophasianus (Bonaparte, 1827); hereafter, “Sage-Grouse”), a species of conservation concern throughout its range. We evaluated relationships between habitat use in a landscape modified by juniper expansion and annual grasses and corticosterone metabolite levels (stress responses) in feces (FCORTm) of female Sage-Grouse. We used remotely sensed data to estimate vegetation cover within hens’ home ranges and accounted for factors that influence FCORTm in other vertebrates, such as age and weather. We collected 36 fecal samples from 22 radio-collared hens during the brood-rearing season (24 May–26 July) in southwestern Idaho 2017–18. Concentrations of corticosterone increased with home range size but decreased with reproductive effort and temperature. The importance of home range size suggests that maintaining or improving habitats that promote smaller home ranges would likely facilitate a lower stress response by hens, which should benefit Sage-Grouse survival and reproduction.


1995 ◽  
Vol 52 (7) ◽  
pp. 1499-1508 ◽  
Author(s):  
Charles K. Minns

A data set assembled from published literature supported the hypotheses that (i) home range size increases allometrically with body size in temperate freshwater fishes, and (ii) fish home ranges are larger in lakes than rivers. The allometric model fitted was home range = A∙(body size)B. Home ranges in lakes were 19–23 times larger than those in rivers. Additional analyses showed that membership in different taxonomic groupings of fish, the presence–absence of piscivory, the method of measuring home range, and the latitude position of the water bodies were not significant predictive factors. Home ranges of freshwater fish were smaller than those of terrestrial mammals, birds, and lizards. Home ranges were larger than area per fish values derived by inverting fish population and assemblage density–size relationships from lakes and rivers and territory–size relationships in stream salmonids. The weight exponent (B) of fish home range was lower than values reported for other vertebrates, 0.58 versus a range of 0.96–1.14. Lake–river home range differences were consistent with differences reported in allometric models of freshwater fish density and production.


2012 ◽  
Vol 60 (1) ◽  
pp. 46 ◽  
Author(s):  
Jenny Sprent ◽  
Stewart C. Nicol

The size of an animal’s home range is strongly influenced by the resources available within it. In productive, resource-rich habitats sufficient resources are obtainable within a smaller area, and for many species, home ranges are smaller in resource-rich habitats than in habitats with lower resource abundance. Location data on 14 male and 27 female echidnas (Tachyglossus aculeatus) fitted with tracking transmitters, in the southern midlands of Tasmania, were used to test the influence of habitat type on home-range size. We hypothesised that as woodland should offer more shelter, food resources and refuges than pasture, echidnas living in woodland would have smaller home ranges than those living in pasture areas. We found significant differences between the sexes. Male echidnas had a significantly larger mean home range than females and a quite different relationship between home-range size and habitat type from females. There was no relationship between the proportion of woodland within male home ranges and home-range size whereas female echidnas had a highly significant negative relationship. This suggests that home-range size of female echidnas is highly influenced by the amount of woodland within it, but the home-range size of male echidnas is controlled by factors other than habitat. This pattern is consistent with the spatial ecology of many other solitary species with a promiscuous mating system. The home ranges of females are scaled to encompass all necessary resources for successfully raising their young within a minimal area, whilst the large home ranges of males are scaled to maximise access to females.


1979 ◽  
Vol 6 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Ronald G. Eckstein ◽  
Thomas F. O'Brien ◽  
Orrin J. Rongstad ◽  
John G. Bollinger

The effects of snowmobile traffic on the winter home-ranges, movements, and activity patterns, of White-tailed Deer (Odocoileus virginianus), were studied during two winters in northern Wisconsin. There were no significant differences in home-range size and habitat use of the Deer in areas with and without snowmobiling. However, snowmobiling caused some Deer to leave the immediate vicinity of the snowmobile trail. Deer were most affected when they were within 61 m of the snowmobile trail.


Sign in / Sign up

Export Citation Format

Share Document