Radiotelemetry of body temperatures of free-ranging snapping turtles (Chelydra serpentina) during summer

1990 ◽  
Vol 68 (8) ◽  
pp. 1659-1663 ◽  
Author(s):  
Gregory P. Brown ◽  
Ronald J. Brooks ◽  
James A. Layfield

We wished to determine whether free-ranging snapping turtles (Chelydra serpentina) would use aquatic and atmospheric basking to maintain body temperature at the mean temperature (28–30 °C) selected by snapping turtles placed in a controlled aquatic thermal gradient. Body temperatures from eight adult snapping turtles in three different lakes in Algonquin Provincial Park were monitored by radiotelemetry during July and August 1987. Mean body temperature of all eight turtles over the study period was 22.7 °C, and mean temperature of every individual was well below the reported mean selected temperature for this species. The turtles did not maintain body temperatures near the available maximum environmental temperature. The mean body temperatures of the turtles were not significantly different among the three study lakes although these lakes had different physical characteristics. Similarly, there were no significant differences, among individual turtles, between air temperatures or operative environmental temperatures recorded concurrently with their body temperatures Nevertheless, mean body temperatures differed significantly among individuals; foraging tactics, metabolic rates, and home range structure may account for these differences.

1984 ◽  
Vol 5 (1) ◽  
pp. 37-41 ◽  
Author(s):  
David Stubbs ◽  
Adrian Hailey ◽  
Elizabeth Pulford

AbstractThe mean body temperature of T. hermanni in woodland in France was 28.5 °C (August 1981). Body temperatures were elevated above air temperature and indirect evidence for basking and selection of an optimal microenvironment is discussed.


1960 ◽  
Vol 11 (5) ◽  
pp. 871 ◽  
Author(s):  
DF Dowling

An experiment was performed to test the effect of solar radiation on the body temperatures of cattle, both clipped and with hair coat, in a clear transparent plastic covering as compared with cattle in a white reflective plastic covering. The mean body temperature of the animals in white plastic coats was 0.15°F lower than that of animals in clear plastic coats. This difference was highly significant statistically (P< 0.001). Animals in both clear and white coats had higher body temperatures than controls without plastic coats. The difference was highly significant, and was about 1.5°F in the clipped animals.


1958 ◽  
Vol 193 (3) ◽  
pp. 539-540 ◽  
Author(s):  
A. H. Hamdy ◽  
C. R. Weaver

The body temperatures of 37 Merino and Shropshire lambs were recorded for the first 100 days of life. Mean temperature of Merino lambs was found to be 102.8°F with a range of 100.2°– 104.0°F while the mean temperature of Shropshire lambs was 102.7°F with a range of 101.2°–104.4°F. There was no relation between the internal and atmospheric temperatures. Again, the correlation between the body and atmospheric temperatures within limited age groups was not statistically significant. The temperature of older lambs was less variable than that of younger lambs.


2002 ◽  
Vol 205 (14) ◽  
pp. 2099-2105 ◽  
Author(s):  
K. Mark Wooden ◽  
Glenn E. Walsberg

SUMMARYThis study quantifies the thermoregulatory ability and energetics of a mammal, the round-tailed ground squirrel Spermophilus tereticaudus,that can relax thermoregulatory limits without becoming inactive. We measured body temperature and metabolic rate in animals exposed for short periods (1 h)to air temperatures ranging from 10 to 45 °C and for long periods (8 h) to air temperatures ranging from 10 to 30 °C. Within 45 min of exposure to air temperatures ranging from 10 to 45 °C, the mean body temperatures of alert and responsive animals ranged from 32.1 °C(Tair=10 °C) to 40.4 °C(Tair=45 °C). This thermolability provided significant energetic savings below the thermoneutral zone, ranging from 0.63 W (18 %) at 10 °C to 0.43 W (43 %) at 30 °C. When exposed for 8 h to air temperatures between 10 and 30 °C, animals varied their body temperature significantly over time. At all air temperatures, the lowest body temperature(maintained for at least 1 h) was 31.2 °C. The highest body temperatures(maintained for at least 1 h) were 33.6 °C at 10 °C, 35.3 °C at 20°C and 36.3 °C at 30 °C. The energetic savings realized by maintaining the minimum rather than the maximum body temperature was 0.80 W(25 %) at 10 °C, 0.71 W (33 %) at 20 °C and 0.40 W (47 %) at 30°C. This study demonstrates in several ways the ability of this species to adjust energy expenditure through heterothermy.


1987 ◽  
Vol 8 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Benoit Heulin

AbstractMean body temperature (TC) of Lacerta vivpara ranges from 26°8 to 32° at Paimpont (France). There is a highly significant correlation between environmental temperatures (TS) and body temperatures (TC). The mean body temperature of pregnant females is lower than that of males and non-pregnant females. Also, the regression line TC = f(TS) calculated for pregnant females is different from those calculated for males and non-pregnant females. The possible relations between pregnancy and body temperature are discussed.


2019 ◽  
Vol 40 (3) ◽  
pp. 349-360
Author(s):  
Natalia Fierro-Estrada ◽  
Yasmin Guadalupe González González ◽  
Donald B. Miles ◽  
Margarita Martínez Gómez ◽  
Andrés García ◽  
...  

Abstract Ambient temperature is a primary factor affecting the physiology and activity of reptiles. Thermoregulation involves a series of mechanisms to maintain an organism’s body temperature within a narrow range. The study of thermal ecology of lizards is relevant for understanding their distribution, life history, ecology and thermal requirements. Moreover, determining how species are able to attain physiologically active body temperatures in challenging environments is necessary for assessing the risk of extinction due to climate change, especially for threatened endemic species. We evaluated and compared the thermal ecology of two populations of the viviparous lizard Barisia imbricata, at contrasting elevations (2200 and 3700 m). We obtained variation in thermal data from winter through autumn for multiple years. We determined thermal efficiency indices based on field active body temperatures, preferred temperatures (in a thermal gradient), and operative environmental temperatures (according to null models). We also recorded substrate and air temperatures at the time of capture. Mean body temperature of both populations showed a positive correlation with environmental temperatures. We found significant seasonal differences in body temperature in both populations, and between body temperatures of the two populations. Our results suggest that B. imbricata is an eurythermic species and can thermoregulate actively at any given time. However, when environmental temperatures are within the range of preferred temperatures, the species does not engage in thermoregulatory behavior. This information expands knowledge on the range of possible thermal responses to environmental variation within a species.


1991 ◽  
Vol 69 (5) ◽  
pp. 1314-1320 ◽  
Author(s):  
Ronald J. Brooks ◽  
Gregory P. Brown ◽  
David A. Galbraith

A northern population of snapping turtles (Chelydra serpentina) centred around Lake Sasajewun in the Wildlife Research Area in Algonquin Park, Ontario, has been studied and individually marked since 1972. From 1972 to 1985, annual mortality and survivorship of adult females had been estimated at 1 and 96.6%, respectively, and only six dead turtles were found. Lake Sasajewun's population of C. serpentina was estimated in 1978–1979 and 1984–1985 at 38 and 47 adults, respectively. From 1976 to 1987, total number of nests found in the study area remained fairly constant and there were no significant changes in mean clutch size, mean clutch mass, or mean egg mass. On the main nest site, recruitment from 1976 to 1987 was 1.15 (1.8%) new females per year. From 1987 to 1989, we found 34 dead adult snapping turtles in the Wildlife Research Area. Observations of freshly dead animals indicated that most were killed by otters (Lutra canadensis) during the turtles' winter hibernation. A few uninjured turtles also died of septicemia in early spring shortly after emerging from hibernation. The estimated number of adults in Lake Sasajewun was 31 in 1988–1989, and the minimum number of adult residents known to be alive in the lake dropped from 47 in 1986 to 16 in 1989. In 1986 and 1987, annual adult female survivorship was estimated at 80 and 55%, respectively, and estimated numbers of nesting females declined from 82 in 1986 to 71 and 55 in 1987 and 1988, respectively. The actual number of nests found declined by 38 and 20% over the same periods. Although no significant differences occurred in mean egg mass or mean clutch size between 1987 and 1989 and earlier years, the mean clutch mass in 1988 was larger than in 1977 or 1978. This difference appeared to be due to a gradual increase in the mean age and body size of breeding females rather than to density-dependent changes. Recruitment into the adult breeding female population in 1987–1989 remained less than two individuals per year. Hatchling survival and number of juveniles were low throughout the study. Our observations support the view that populations of species with high, stochastic juvenile mortality and long adult life spans may be decimated quickly by increased mortality of adult animals, particularly if numbers of juveniles and immigrants are low. Recovery of such populations should be very slow because of a lack of effective density-dependent response in reproduction and recruitment.


1908 ◽  
Vol 28 ◽  
pp. 66-84 ◽  
Author(s):  
Sutherland Simpson

SUMMARYThe body-temperature of the following fishes, crustaceans, and echinoderms has been examined and compared with the temperature of the water in which they live:—Cod-fish (Gadus morrhua), ling (Molva vulgaris), torsk (Brosmius brosme), coal-fish or saithe (Gadus virens), haddock (Gadus œgelfinus), flounder (Pleuronectes flesus), smelt (Osmerus eperlanus), dog-fish (Scyllium catulus), shore crab (Carcinus mœnas), edible crab (Cancer pagurus), lobster (Homarus vulgaris), sea-urchin (Echinus esculentus), and starfish (Asterias rubens). The minimum, maximum, and mean temperature difference for each species are given in the following table:—The excess of temperature is most evident in the larger specimens. This is well shown in the case of the coal-fish, where in the adult it was 0°·7 C., and in the great majority (11 out of 12) of the young of the first year, 0°·0 C. The body-weight and the conditions under which the fish are captured probably form the most important factors in determining the temperature difference.In 14 codfish, where the rectal, blood, and muscle temperatures were recorded in the same individual, it was found to be highest in the muscle and lowest in the rectum, the mean temperature difference being 0°·46 C. for the muscle, 0°·41 C for the blood, and 0°·36 C. for the rectum.


1962 ◽  
Vol 17 (2) ◽  
pp. 311-316 ◽  
Author(s):  
F. N. Craig ◽  
E. G. Cummings

For two men walking on a treadmill and wearing two layers of permeable clothing, the same physiological strain measured by the rate of increase in mean body temperature could be produced a) next to a building outdoors in the sunshine with an average air temperature of 85 F and humidity of 20 mm Hg and b) indoors with the same humidity and an air temperature 10 F higher. Under these conditions, the underwear was mainly wet with sweat and the outer layer was mainly dry. In comparable indoor tests on a third subject, the temperature of the underwear approached equilibrium 1 or 2 F lower than the temperature of the skin at air temperatures of 85 and 115 F. The error in calculating clothing insulation introduced by assuming the clothing to be dry is determined by the size and direction of the temperature gradient between skin and air. Adding 10 F to the indoor air temperature does not duplicate all the effects of sunshine. Submitted on September 15, 1961


1960 ◽  
Vol 55 (3) ◽  
pp. 295-302 ◽  
Author(s):  
R. B. Symington

Responses in body, skin and coat temperatures, cardio-respiratory frequencies and rate of moisture secretion of ewes of three breeds to the diurnal fluctuation in ambient temperature were recorded in the presence and absence of drinking water during the hottest part of the Rhodesian year.1. At 7.0 a.m. body temperatures were: Merino 102·8° F.; Persian 102·2° F. and Native 101·5° F. Between 7·0 a.m. and 1·0 p.m. body temperature rose almost equally in Persians and Natives and fell slightly in Merinos. Change in body temperature between 7.0 a.m. and 1.0 p.m. was not affected significantly by availability of water nor age of ewe, but varied with type of thermal burden (i.e. solar insolation only v. solar insolation plus artificial heat) when water was not available. Although air temperature fell towards late afternoon body temperature of Merinos and Natives rose appreciably, that of Persians only slightly.2. At 7·0 a.m. respiratory rates were (cyc./min.): Merino 59·6; Persian 43·0; Native 29·9. Increase in rate of respiration was the main thermolytic mechanism in all breeds. Merinos had a lower threshold of respiratory response to rising ambient temperature than either hair breed but increase in rate of respiration between 7.0 a.m. and 1.0 p.m. did not differ significantly with breed or age.3. No breed appeared to use the peripheral blood system in thermoregulation. Cardio-frequency, as a measure of this blood flow, remained almost constant with a slight tendency to fall with rise in ambient temperature.4. In all breeds skin temperature was related to ambient and body temperatures; consequently the diurnal fluctuation in skin temperature differed in wool and hair breeds. When thermal burden was greatest Merino skin temperature fell, that of hair breeds did not.Except at 11.0 a.m. there was a gradient between rectal, skin and air temperatures. Direct elimination of heat was thus possible for 23 hr. each day.5. In hair breeds moisture secretion depended on insensible perspiration; consequently, rate of moisture secretion changed with body and air temperatures. In Merinos moisture for skin surface evaporation was provided by sensible and insensible perspiration. Natives may be able to sweat at temperatures higher than those recorded but it is unlikely Persians have a sweating mechanism.6. In all breeds coat temperature was related closely to ambient temperature and changes in solar conditions evoked immediate response in coat temperature. Merino fleece apparently stabilized skin temperature whereas Persian and Native hair did not.


Sign in / Sign up

Export Citation Format

Share Document