Quantitative analysis of prey-capture kinematics in Anolis equestris (Reptilia: Iguanidae)

1990 ◽  
Vol 68 (10) ◽  
pp. 2192-2198 ◽  
Author(s):  
Vincent L. Bels

High-speed cinematography was employed to study the mechanics of prey capture in Anolis equestris. Capture of live prey (adult locusts) consists of a cyclic movement of the upper and lower jaws combined with tongue protraction. Kinematic profiles are presented for the jaws, tongue, and forelimbs. The tongue is projected during the "slow open" stage and most of the "fast open" stage. The tongue protrudes beyond the mandibular symphysis during the slow open stage, and rotates simultaneously around a transverse anteromedian axis. The prey is thus contacted by the dorsal sticky surface of the tongue, and then pulled backward into the oral cavity by a combination of a forward movement of the jaws and retraction of the tongue. Gape angle, defined as the angle between the upper and lower jaws, continues to increase during the initial stages of tongue retraction. During the capture process, the anterior part of the body lunges forward, followed by a return to its original position; this displacement is mediated by the forelimbs, which usually remain well anchored to the floor. The cyclic food-capture movements of the jaws and tongue–hyoid system in A. equestris (Iguanidae) and Chameleo dilepis (Chamaeleontidae) are compared. I argue that one of the primary selection forces in the evolution of the different mechanisms of prey prehension in these two lizard groups was enhancement of the locomotor system and, consequently, foraging ability.

2001 ◽  
Vol 204 (17) ◽  
pp. 2943-2958 ◽  
Author(s):  
Eliot G. Drucker ◽  
George V. Lauder

SUMMARYA key evolutionary transformation of the locomotor system of ray-finned fishes is the morphological elaboration of the dorsal fin. Within Teleostei, the dorsal fin primitively is a single midline structure supported by soft, flexible fin rays. In its derived condition, the fin is made up of two anatomically distinct portions: an anterior section supported by spines, and a posterior section that is soft-rayed. We have a very limited understanding of the functional significance of this evolutionary variation in dorsal fin design. To initiate empirical hydrodynamic study of dorsal fin function in teleost fishes, we analyzed the wake created by the soft dorsal fin of bluegill sunfish (Lepomis macrochirus) during both steady swimming and unsteady turning maneuvers. Digital particle image velocimetry was used to visualize wake structures and to calculate in vivo locomotor forces. Study of the vortices generated simultaneously by the soft dorsal and caudal fins during locomotion allowed experimental characterization of median-fin wake interactions.During high-speed swimming (i.e. above the gait transition from pectoral- to median-fin locomotion), the soft dorsal fin undergoes regular oscillatory motion which, in comparison with analogous movement by the tail, is phase-advanced (by 30% of the cycle period) and of lower sweep amplitude (by 1.0cm). Undulations of the soft dorsal fin during steady swimming at 1.1bodylengths−1 generate a reverse von Kármán vortex street wake that contributes 12% of total thrust. During low-speed turns, the soft dorsal fin produces discrete pairs of counterrotating vortices with a central region of high-velocity jet flow. This vortex wake, generated in the latter stage of the turn and posterior to the center of mass of the body, counteracts torque generated earlier in the turn by the anteriorly positioned pectoral fins and thereby corrects the heading of the fish as it begins to translate forward away from the turning stimulus. One-third of the laterally directed fluid force measured during turning is developed by the soft dorsal fin. For steady swimming, we present empirical evidence that vortex structures generated by the soft dorsal fin upstream can constructively interact with those produced by the caudal fin downstream. Reinforcement of circulation around the tail through interception of the dorsal fin’s vortices is proposed as a mechanism for augmenting wake energy and enhancing thrust.Swimming in fishes involves the partitioning of locomotor force among several independent fin systems. Coordinated use of the pectoral fins, caudal fin and soft dorsal fin to increase wake momentum, as documented for L. macrochirus, highlights the ability of teleost fishes to employ multiple propulsors simultaneously for controlling complex swimming behaviors.


1995 ◽  
Vol 198 (5) ◽  
pp. 1173-1183 ◽  
Author(s):  
A Gibb

Hornyhead turbot, Pleuronichthys verticalis (Pleuronectiformes: Pleuronectidae), are morphologically asymmetrical teleosts with substantial bilateral asymmetry in the neurocranium, suspensorium and anterior jaws. In order to quantify the kinematics of prey capture and to test for functional bilateral asymmetries, four individuals of this species were video-taped feeding using a high-speed video system at 200 fields s-1. Frame-by-frame analysis revealed several features not commonly found in prey capture behavior of previously studied ray-finned fishes. These features include (1) extreme lateral compression of the suspensorium and opercular series prior to mouth opening, indicating the consistent presence of a preparatory phase during feeding, (2) apparent dissociation of hyoid retraction and lower jaw depression, (3) prolonged hyoid retraction throughout much of the feeding cycle, and (4) concomitant dorsal rotation of the neurocranium and closing of the jaws. P. verticalis also demonstrate a significant degree of functional bilateral asymmetry during prey capture. When approaching prey, fish flex their heads towards the ocular (anatomically the right) side of the body. During prey capture, their jaws bend out of the midline towards the blind (left) side. Comparisons of the displacement and timing for movements of homologous anatomical features on the ocular and blind sides of the head reveal that maximum gape is always larger on the blind side of the head than on the ocular side. In contrast, other kinematic variables measured are similar on both sides of the head. These results suggest that P. verticalis possess unique functional features of prey capture behavior and that morphological bilateral asymmetry of the head and jaws is associated with, and perhaps causally related to, the functional bilateral asymmetry present during feeding.


1997 ◽  
Vol 200 (4) ◽  
pp. 767-784 ◽  
Author(s):  
G Gillis

Many workers interested in the mechanics and kinematics of undulatory aquatic locomotion have examined swimming in fishes that use a carangiform or subcarangiform mode. Few empirical data exist describing and quantifying the movements of elongate animals using an anguilliform mode of swimming. Using high-speed video, I examine the axial undulatory kinematics of an elongate salamander, Siren intermedia, in order to provide data on how patterns of movement during swimming vary with body position and swimming speed. In addition, swimming kinematics are compared with those of other elongate vertebrates to assess the similarity of undulatory movements within the anguilliform locomotor mode. In Siren, most kinematic patterns vary with longitudinal position. Tailbeat period and frequency, stride length, Froude efficiency and the lateral velocity and angle of attack of tail segments all vary significantly with swimming speed. Although swimming speed does not show a statistically significant effect on kinematic variables such as maximum undulatory amplitude (which increases non-linearly along the body), intervertebral flexion and path angle, examination of the data suggests that speed probably has subtle and site-specific effects on these variables which are not detected here owing to the small sample size. Maximum lateral displacement and flexion do not coincide in time within a given tailbeat cycle. Furthermore, the maximum orientation (angle with respect to the animal's direction of forward movement) and lateral velocity of tail segments also do not coincide in time. Comparison of undulatory movements among diverse anguilliform swimmers suggests substantial variation across taxa in parameters such as tailbeat amplitude and in the relationship between tailbeat frequency and swimming speed. This variation is probably due, in part, to external morphological differences in the shape of the trunk and tail among these taxa.


2014 ◽  
Vol 64 (3) ◽  
pp. 239-260
Author(s):  
Corstiaen P.C. Versteegh ◽  
Mees Muller

Aquatic organisms have to deal with different hydrodynamic regimes, depending on their size and speed during locomotion. The pea crab swims by beating the third and fourth pereiopod on opposite sides as pairs. Using particle tracking velocimetry and high-speed video recording, we quantify the kinematics and vortices in the wake of the pea crab. Where the proximal parts of the pereiopods beat in antiphase, their distal parts show an overlapping beat period. By using four instead of two limbs for propulsion, an uninterrupted forward movement is established, reducing the influence of the acceleration reaction. Before body speed is maximal, force generation of the pereiopods seems most active when passing an orthogonal position with the body.


Author(s):  
E. J. Allen

The mackerel (Scomber scomber) is a pelagic and migratory fish, which during the warmer months of the year frequents the coastal waters in the northern temperate region of the Atlantic. The whole form of the fish is evidently well fitted for swift motion and the free-swimming mode of life. The spindle-shaped outline of the body, its perfect curves and rounded surfaces, the absence of all irregular projections which would tend to retard forward movement, the great muscular development of the tail, and the deep forking of the caudal fin, combine to produce an almost ideal adaptation for propulsion at high speed through the water.


1998 ◽  
Vol 201 (16) ◽  
pp. 2433-2444 ◽  
Author(s):  
LA Ferry-Graham

Recent work on teleosts suggests that attack behaviors or kinematics may be modified by a predator on the basis of the size of the prey or the ability of the prey to sense predators and escape capture (elusivity). Sharks are generally presumed to be highly visual predators; thus, it is reasonable to expect that they might also be capable of such behavioral modulation. In this study, I investigated the effect of prey item size and type on prey-capture behavior in leopard sharks (Triakis semifasciata) that had been acclimated to feeding in the laboratory. Using high-speed video, sharks were filmed feeding on two sizes of the same prey item (thawed shrimp pieces) and two potentially more elusive prey items (live earthworms and live mud shrimp). In leopard sharks, little effect of prey elusivity was found for kinematic variables during prey capture. However, the large proportion of successful captures of the live prey suggests that they did not prove to be truly elusive prey items for the leopard shark. There were significant size effects on prey-capture kinematics, with the larger non-elusive items inducing greater head expansion during prey capture. Ram-suction index values also indicated that strikes on large, non-elusive prey had a significantly larger suction component than strikes on similar small prey items. This finding is interesting given that the two sizes of non-elusive prey item offered no differential challenge in terms of a performance consequence (reduced capture success).


1996 ◽  
Vol 199 (8) ◽  
pp. 1727-1742 ◽  
Author(s):  
A Herrel ◽  
J Cleuren ◽  
F Vree

The kinematics of prey capture, intraoral transport and swallowing in lizards of the species Agama stellio (Agamidae) were investigated using cineradiography (50 frames s-1) and high-speed video recordings (500 frames s-1). Small metal markers were inserted into different parts of the upper and lower jaw and the tongue. Video and cineradiographic images were digitized, and displacements of the body, head, upper and lower jaw and the tongue were quantified. Twenty additional variables depicting displacements and timing of events were calculated. A factor analysis performed on the kinematic data separates prey capture and swallowing cycles from intraoral transport bites. However, the intraoral transport stage cannot be separated into chewing (reduction) and transport bites. The effect of prey type and size on the feeding kinematics of intraoral transport and swallowing cycles was investigated. During the intraoral transport stage, distinct aspects (e.g. durations, maximal excursions) of the gape and tongue cycle are modulated in response to both the size and type of the prey item. The results for A. stellio generally agree with a previous model, although it is the entire slow opening phase rather than solely the duration of the second part of this phase that is affected by the size of the prey. The intraoral transport cycles in A. stellio show the two synapomorphic characteristics of tetrapods (tongue-based terrestrial intraoral prey transport and the existence of a long preparatory period of prey compression). However, not all five characters of the feeding cycle previously proposed for amniotes are present in A. stellio. One major difference is that in A. stellio the recovery of the hyolingual apparatus does not take place during the slow opening phase but during the slow closing/powerstroke phase.


Author(s):  
P Caldentey ◽  
N P Brennan ◽  
T Heimann ◽  
J M Gardiner

Common snook Centropomus undecimalis is an important estuarine-dependent predatory fish species. In Florida, the decline of wild stocks, due mainly to fishing pressure and loss of habitat, has led to increasingly restrictive management actions in the last 50 years. This has also promoted its culture for stock enhancement as one of many management actions. Stocking efforts indicate that survival of snook fingerlings can be poor and improvements could be achieved through prerelease conditioning. In this study we compared prey capture kinematics between naïve hatchery juvenile snook and wild conspecifics. Capture behavior, quantified with high-speed cameras, identified specific differences in prey capture of hatchery and wild snook. Naïve juvenile hatchery snook exposed to live prey made fewer attempts to feed, had longer delays in the time to strike, exhibited higher strike velocities and engulfed prey earlier in the gape cycle, and had less overall feeding success compared to wild fish. However, experience with repeated live prey feeding events quickly improved hatchery snook feeding success, similar to wild fish. Therefore, prerelease training via exposure to live prey could improve feeding performance and overall fate of snook released into the wild.


1993 ◽  
Vol 185 (1) ◽  
pp. 251-265 ◽  
Author(s):  
I. A. Johnston ◽  
C. E. Franklin ◽  
T. P. Johnson

Muscle action during swimming and the contractile properties of isolated muscle fibres were studied in the short-horned sculpin Myoxocephalus scorpius at 5°C. Semi-steady swimming, startle responses and prey-capture events were filmed with a high-speed video at 200 frames s-1, using fish 22–26 cm in total length (L). Electromyographical (EMG) recordings, synchronised with the video, were made from fast muscle in rostral and caudal myotomes at points 0.40L and 0.80L along the body. Fast muscle fibres were first recruited at tail-beat frequencies of 3.7-4.2 Hz, corresponding to a swimming speed of 1.7 L s-1. Electrical activity in the muscles occurred during 16–38 % of each tail- beat cycle regardless of frequency. Muscle fibres were activated during the lengthening phase of the cycle. In caudal myotomes, the onset of the muscle activity occurred at a phase of 75–105° at 3.7 Hz, decreasing to approximately 50° at frequencies greater than 4.5 Hz (0° phase was defined as the point at which muscle fibres passed through their resting lengths in the stretch phase of the cycle; a full cycle is 360°). Prey capture was a stereotyped behaviour consisting of a preparatory movement, a powerstroke at 7–9 Hz and a glide of variable duration. The delay between the activation of muscle fibres in rostral and caudal myotomes during prey capture and startle responses was approximately 10 ms. Fast muscle fibres isolated from rostral and caudal myotomes were found to have similar isometric contractile properties. Maximum tetanic stress was 220 kN m-2, and half-times for force development and relaxation were approximately 50 ms and 135 ms respectively. Power output was measured by the ‘work loop’ technique in muscle fibres subjected to sinusoidal length changes at the range of frequencies found during swimming. Under optimal conditions of strain and stimulation, muscle fibres from rostral and caudal myotomes produced similar levels of work (3.5 J kg-1) and generated their maximum power output of 25–30 W kg-1 at the tail-beat frequencies used in swimming (4–8 Hz). Progressively delaying the onset of stimulation relative to the start of the strain cycle resulted in an initial modest increase, followed by a decline, in the work per cycle. Maximum positive work and net negative work were done at stimulus phase values of 20–50° and 120–140° respectively. The EMG and swimming studies suggest that fast muscle fibres in both rostral and caudal myotomes do net positive work under most conditions.


1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.


Sign in / Sign up

Export Citation Format

Share Document