Body mass and dive duration in alcids and penguins

1999 ◽  
Vol 77 (11) ◽  
pp. 1838-1842 ◽  
Author(s):  
Yutaka Watanuki ◽  
Alan E Burger

Interspecific allometric equations for dive duration were calculated for two groups of wing-propelled divers: penguins, which specializing in diving, and alcids, which balance demands for aerial flying with those of diving. The equations for maximum dive duration (min) were 1.433M0.702 and 3.612M0.735 (where M is body mass in kilograms) for penguins (10 species) and alcids (9 species), respectively, hence did not support a simple oxygen store/usage hypothesis based on the prediction that the mass exponent of aerobic dive limit is close to 0.25. Equations for feeding dives were 0.569M0.712 and 1.094M0.391 in penguins (9 species) and alcids (10 species), respectively. The allometric exponent for the duration of feeding dives for penguins did not match the predicted value of 0.25, but that for alcids did not differ significantly from this value. Alcids exhibited a maximum dive duration 2.5 times longer than that for penguins after mass effects were controlled for. The size of oxygen stores and metabolic rates based on laboratory studies of penguins and alcids failed to explain the longer dive duration in alcids than in penguins.

1992 ◽  
Vol 165 (1) ◽  
pp. 181-194 ◽  
Author(s):  
M. A. Castellini ◽  
G. L. Kooyman ◽  
P. J. Ponganis

The metabolic rates of freely diving Weddell seals were measured using modern methods of on-line computer analysis coupled to oxygen consumption instrumentation. Oxygen consumption values were collected during sleep, resting periods while awake and during diving periods with the seals breathing at the surface of the water in an experimental sea-ice hole in Antarctica. Oxygen consumption during diving was not elevated over resting values but was statistically about 1.5 times greater than sleeping values. The metabolic rate of diving declined with increasing dive duration, but there was no significant difference between resting rates and rates in dives lasting up to 82 min. Swimming speed, measured with a microprocessor velocity recorder, was constant in each animal. Calculations of the aerobic dive limit of these seals were made from the oxygen consumption values and demonstrated that most dives were within this theoretical limit. The results indicate that the cost of diving is remarkably low in Weddell seals relative to other diving mammals and birds.


2021 ◽  
pp. jeb.233544
Author(s):  
Evan E. Byrnes ◽  
Karissa O. Lear ◽  
Lauran R. Brewster ◽  
Nicholas M. Whitney ◽  
Matthew J. Smukall ◽  
...  

Dynamic Body Acceleration (DBA), measured through animal-attached tags, has emerged as a powerful method for estimating field metabolic rates of free-ranging individuals. Following respirometry to calibrate oxygen consumption rate (MO2) with DBA under controlled conditions, predictive models can be applied to DBA data collected from free-ranging individuals. However, laboratory calibrations are generally performed on a relatively narrow size range of animals, which may introduce biases if predictive models are applied to differently sized individuals in the field. Here, we tested the mass dependence of the DBA-MO2 relationship to develop an experimental framework for the estimation of field metabolic rates when organisms differ in size. We performed respirometry experiments with individuals spanning one order of magnitude in body mass (1.74–17.15 kg) and used a two-stage modelling process to assess the intraspecific scale dependence of the MO2-DBA relationship and incorporate such dependencies into the coefficients of MO2 predictive models. The final predictive model showed scale dependence; the slope of the MO2-DBA relationship was strongly allometric (M1.55), whereas the intercept term scaled closer to isometry (M1.08). Using bootstrapping and simulations, we evaluated the performance of this coefficient-corrected model against commonly used methods of accounting for mass effects on the MO2-DBA relationship and found the lowest error and bias in the coefficient-corrected approach. The strong scale dependence of the MO2-DBA relationship indicates that caution must be exercised when models developed using one size class are applied to individuals of different sizes.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2569 ◽  
Author(s):  
April Hayward ◽  
Mariela Pajuelo ◽  
Catherine G. Haase ◽  
David M. Anderson ◽  
James F. Gillooly

Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen stored in the body and the rate at which it is consumed (i.e., “oxygen store/usage hypothesis”). The body mass-dependence of dive duration among endothermic vertebrates is largely supportive of this model, but previous analyses of ectothermic vertebrates show no such body mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely support the oxygen store/usage hypothesis after accounting for the well-established effects of temperature on oxygen consumption rates. Analyses of the body mass and temperature dependence of dive duration in 181 species of endothermic vertebrates and 29 species of ectothermic vertebrates show that dive duration increases as a power law with body mass, and decreases exponentially with increasing temperature. Thus, in the case of ectothermic vertebrates, changes in environmental temperature will likely impact the foraging ecology of divers.


1991 ◽  
Vol 69 (1) ◽  
pp. 255-257 ◽  
Author(s):  
Allen Kurta

Temperate insectivorous bats are commonly prevented from foraging by cold or wet weather. This study examines the effect of missing a single night of foraging on the energetics of pregnant and lactating little brown bats (Myotis lucifugus) under simulated roost conditions. After not foraging, the day-roosting metabolic rate of pregnant M. lucifugus was reduced by 61% and that of lactating bats by 46%. Although previous laboratory studies predicted that food-deprived bats should remain in torpor throughout the day-roosting period, M. lucifugus consistently aroused from torpor between 11:00 and 15:00 and maintained elevated metabolic rates for the rest of the day.


1986 ◽  
Vol 120 (1) ◽  
pp. 351-367 ◽  
Author(s):  
DENNIS M. HUDSON ◽  
DAVID R. JONES

Pekin ducks, ranging in mass from 0.05 to 3.5 kg, were force-dived to determine the maximum tolerance to diving asphyxia. The size of the respiratory and blood oxygen storage compartments and oxygen utilization during the dive were also measured. By the end of a maximum dive, less than 4% of the original O2 store remained in the blood, whereas almost 25% remained in the respiratory system. In contrast, the level of arterial glucose did not change significantly during diving. The relationship of a number of measured variables to body mass was analysed using linear regression analysis on logio-transformed variables to generate power equations of the form Y = aXb (Y, any variable; X, body mass; a, mass coefficient; b, mass exponent). The mass exponent was 1.19 for the total oxygen stores and 0.64 for maximum diving duration. Using measurements of brain and heart mass and literature estimates of the scaling of O2 consumption, it was also possible to predict a mass exponent aerobic metabolism by these organs during a maximum dive. Allometric cancellation of mass exponents for O2 availability and predicted utilization resulted in a residual mass exponent almost identical to the measured value for maximum dive duration. Thus it is possible to predict the relationship of maximum underwater endurance to body mass in Pekin ducks from a knowledge of the oxygen consumption by, and availability to, the central aerobic organs.


2019 ◽  
Vol 286 (1911) ◽  
pp. 20191693 ◽  
Author(s):  
Boël Mélanie ◽  
Romestaing Caroline ◽  
Voituron Yann ◽  
Roussel Damien

Metabolic activity sets the rates of individual resource uptake from the environment and resource allocations. For this reason, the relationship with body size has been heavily documented from ecosystems to cells. Until now, most of the studies used the fluxes of oxygen as a proxy of energy output without knowledge of the efficiency of biological systems to convert oxygen into ATP. The aim of this study was to examine the allometry of coupling efficiency (ATP/O) of skeletal muscle mitochondria isolated from 12 mammal species ranging from 6 g to 550 kg. Mitochondrial efficiencies were measured at different steady states of phosphorylation. The efficiencies increased sharply at higher metabolic rates. We have shown that body mass dependence of mitochondrial efficiency depends on metabolic intensity in skeletal muscles of mammals. Mitochondrial efficiency positively depends on body mass when mitochondria are close to the basal metabolic rate; however, the efficiency is independent of body mass at the maximum metabolic rate. As a result, it follows that large mammals exhibit a faster dynamic increase in ATP/O than small species when mitochondria shift from basal to maximal activities. Finally, the invariant value of maximal coupling efficiency across mammal species could partly explain why scaling exponent values are very close to 1 at maximal metabolic rates.


Sign in / Sign up

Export Citation Format

Share Document