scholarly journals Collision centrality and system size dependences of light nuclei production via dynamical coalescence mechanism

2021 ◽  
Vol 57 (12) ◽  
Author(s):  
Yi-Lin Cheng ◽  
Song Zhang ◽  
Yu-Gang Ma
2008 ◽  
Vol 23 (32) ◽  
pp. 5217-5227 ◽  
Author(s):  
DE-MING WEI ◽  
FENG-LAN SHAO ◽  
JUN SONG ◽  
YUN-FEI WANG

Utilizing the three-fireball picture within the quark combination model, we study systematically the charged particle pseudorapidity distributions in both Au + Au and Cu + Cu collision systems as a function of collision centrality and energy, [Formula: see text], 62.4, 130 and 200 GeV, in the full pseudorapidity range. We find that: (i) the contribution from leading particles to dN ch /dη distributions increases with the decrease of the collision centrality and energy respectively; (ii) the number of leading particles is almost independent of the collision energy, but it does depend on the nucleon participants N part ; (iii) if Cu + Cu and Au + Au collisions at the same collision energy are selected to have the same N part , the resulting charged particle dN/dη distributions are nearly identical, in both the midrapidity particle density and the width of the distribution; this is true for both 62.4 GeV and 200 GeV data; (iv) the limiting fragmentation phenomenon is reproduced. We predict the total multiplicity and pseudorapidity distribution for the charged particles in Pb + Pb collisions at [Formula: see text]. Finally, we give a qualitative analysis of N ch /〈N part /2〉 and dN ch /dη/〈N part /2〉|η≈0 as a function of [Formula: see text] and N part from the RHIC to the LHC.


2019 ◽  
Author(s):  
Brian Nguyen ◽  
Guo P Chen ◽  
Matthew M. Agee ◽  
Asbjörn M. Burow ◽  
Matthew Tang ◽  
...  

Prompted by recent reports of large errors in noncovalent interaction (NI) energies obtained from many-body perturbation theory (MBPT), we compare the performance of second-order Møller–Plesset MBPT (MP2), spin-scaled MP2, dispersion-corrected semilocal density functional approximations (DFA), and the post-Kohn–Sham random phase approximation (RPA) for predicting binding energies of supramolecular complexes contained in the S66, L7, and S30L benchmarks. All binding energies are extrapolated to the basis set limit, corrected for basis set superposition errors, and compared to reference results of the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better quality. Our results confirm that MP2 severely overestimates binding energies of large complexes, producing relative errors of over 100% for several benchmark compounds. RPA relative errors consistently range between 5-10%, significantly less than reported previously using smaller basis sets, whereas spin-scaled MP2 methods show limitations similar to MP2, albeit less pronounced, and empirically dispersion-corrected DFAs perform almost as well as RPA. Regression analysis reveals a systematic increase of relative MP2 binding energy errors with the system size at a rate of approximately 1‰ per valence electron, whereas the RPA and dispersion-corrected DFA relative errors are virtually independent of the system size. These observations are corroborated by a comparison of computed rotational constants of organic molecules to gas-phase spectroscopy data contained in the ROT34 benchmark. To analyze these results, an asymptotic adiabatic connection symmetry-adapted perturbation theory (AC-SAPT) is developed which uses monomers at full coupling whose ground-state density is constrained to the ground-state density of the complex. Using the fluctuation–dissipation theorem, we obtain a nonperturbative “screened second-order” expression for the dispersion energy in terms of monomer quantities which is exact for non-overlapping subsystems and free of induction terms; a first-order RPA-like approximation to the Hartree, exchange, and correlation kernel recovers the macroscopic Lifshitz limit. The AC-SAPT expansion of the interaction energy is obtained from Taylor expansion of the coupling strength integrand. Explicit expressions for the convergence radius of the AC-SAPT series are derived within RPA and MBPT and numerically evaluated. Whereas the AC-SAPT expansion is always convergent for nondegenerate monomers when RPA is used, it is found to spuriously diverge for second-order MBPT, except for the smallest and least polarizable monomers. The divergence of the AC-SAPT series within MBPT is numerically confirmed within RPA; prior numerical results on the convergence of the SAPT expansion for MBPT methods are revisited and support this conclusion once sufficiently high orders are included. The cause of the failure of MBPT methods for NIs of large systems is missing or incomplete “electrodynamic” screening of the Coulomb interaction due to induced particle–hole pairs between electrons in different monomers, leaving the effective interaction too strong for AC-SAPT to converge. Hence, MBPT cannot be considered reliable for quantitative predictions of NIs, even in moderately polarizable molecules with a few tens of atoms. The failure to accurately account for electrodynamic polarization makes MBPT qualitatively unsuitable for applications such as NIs of nanostructures, macromolecules, and soft materials; more robust non-perturbative approaches such as RPA or coupled cluster methods should be used instead whenever possible.<br>


2019 ◽  
Author(s):  
Rebecca Lindsey ◽  
Nir Goldman ◽  
Laurence E. Fried ◽  
Sorin Bastea

<p>The interatomic Chebyshev Interaction Model for Efficient Simulation (ChIMES) is based on linear combinations of Chebyshev polynomials describing explicit two- and three-body interactions. Recently, the ChIMES model has been developed and applied to a molten metallic system of a single atom type (carbon), as well as a non-reactive molecular system of two atom types at ambient conditions (water). Here, we continue application of ChIMES to increasingly complex problems through extension to a reactive system. Specifically, we develop a ChIMES model for carbon monoxide under extreme conditions, with built-in transferability to nearby state points. We demonstrate that the resulting model recovers much of the accuracy of DFT while exhibiting a 10<sup>4</sup>increase in efficiency, linear system size scalability and the ability to overcome the significant system size effects exhibited by DFT.</p>


Engevista ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 1496
Author(s):  
Relly Victoria Virgil Petrescu ◽  
Raffaella Aversa ◽  
Antonio Apicella ◽  
Florian Ion Petrescu

Despite research carried out around the world since the 1950s, no industrial application of fusion to energy production has yet succeeded, apart from nuclear weapons with the H-bomb, since this application does not aims at containing and controlling the reaction produced. There are, however, some other less mediated uses, such as neutron generators. The fusion of light nuclei releases enormous amounts of energy from the attraction between the nucleons due to the strong interaction (nuclear binding energy). Fusion it is with nuclear fission one of the two main types of nuclear reactions applied. The mass of the new atom obtained by the fusion is less than the sum of the masses of the two light atoms. In the process of fusion, part of the mass is transformed into energy in its simplest form: heat. This loss is explained by the Einstein known formula E=mc2. Unlike nuclear fission, the fusion products themselves (mainly helium 4) are not radioactive, but when the reaction is used to emit fast neutrons, they can transform the nuclei that capture them into isotopes that some of them can be radioactive. In order to be able to start and to be maintained with the success the nuclear fusion reactions, it is first necessary to know all this reactions very well. This means that it is necessary to know both the main reactions that may take place in a nuclear reactor and their sense and effects. The main aim is to choose and coupling the most convenient reactions, forcing by technical means for their production in the reactor. Taking into account that there are a multitude of possible variants, it is necessary to consider in advance the solutions that we consider them optimal. The paper takes into account both variants of nuclear fusion, and cold and hot. For each variant will be mentioned the minimum necessary specifications.


Author(s):  
Roger H. Stuewer

Serious contradictions to the existence of electrons in nuclei impinged in one way or another on the theory of beta decay and became acute when Charles Ellis and William Wooster proved, in an experimental tour de force in 1927, that beta particles are emitted from a radioactive nucleus with a continuous distribution of energies. Bohr concluded that energy is not conserved in the nucleus, an idea that Wolfgang Pauli vigorously opposed. Another puzzle arose in alpha-particle experiments. Walther Bothe and his co-workers used his coincidence method in 1928–30 and concluded that energetic gamma rays are produced when polonium alpha particles bombard beryllium and other light nuclei. That stimulated Frédéric Joliot and Irène Curie to carry out related experiments. These experimental results were thoroughly discussed at a conference that Enrico Fermi organized in Rome in October 1931, whose proceedings included the first publication of Pauli’s neutrino hypothesis.


1961 ◽  
Vol 77 (4) ◽  
pp. 853-865 ◽  
Author(s):  
F de S Barros ◽  
P D Forsyth ◽  
A A Jaffe ◽  
I J Taylor
Keyword(s):  

1966 ◽  
Vol 79 (2) ◽  
pp. 321-373 ◽  
Author(s):  
H. Tyrén ◽  
S. Kullander ◽  
O. Sundberg ◽  
R. Ramachandran ◽  
P. Isacsson ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 125 (12) ◽  
pp. 6963-6974
Author(s):  
Ravi C. Dutta ◽  
Christian C. Zuluaga-Bedoya ◽  
Suresh K. Bhatia

2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Gernot Münster ◽  
Manuel Cañizares Guerrero

AbstractRoughening of interfaces implies the divergence of the interface width w with the system size L. For two-dimensional systems the divergence of $$w^2$$ w 2 is linear in L. In the framework of a detailed capillary wave approximation and of statistical field theory we derive an expression for the asymptotic behaviour of $$w^2$$ w 2 , which differs from results in the literature. It is confirmed by Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document