scholarly journals First-order formalism for twinlike models with several real scalar fields

Author(s):  
D. Bazeia ◽  
A. S. Lobão ◽  
L. Losano ◽  
R. Menezes
2002 ◽  
Vol 17 (29) ◽  
pp. 1945-1953 ◽  
Author(s):  
D. BAZEIA ◽  
W. FREIRE ◽  
L. LOSANO ◽  
R. F. RIBEIRO

We deal with the presence of topological defects in models for two real scalar fields. We comment on defects hosting topological defects and search for explicit defect solutions using the trial orbit method. As we know, under certain circumstances the second-order equations of motion can be solved by solutions of first-order differential equations. In this case we show that the trial orbit method can be used very efficiently to obtain explicit solutions.


2005 ◽  
Vol 19 (17) ◽  
pp. 801-819 ◽  
Author(s):  
D. BAZEIA ◽  
J. MENEZES ◽  
R. MENEZES

We review investigations on defects in systems described by real scalar fields in (D, 1) space-time dimensions. We first work in one spatial dimension, with models described by one and two real scalar fields, and in higher dimensions. We show that when the potential assumes specific form, there are models which support stable global defects for D arbitrary. We also show how to find first-order differential equations that solve the equations of motion, and how to solve models in D dimensions via soluble problems in D = 1. We illustrate the procedure examining specific models and showing how they may be used in applications in different contexts in condensed matter physics, and in other areas.


1999 ◽  
Vol 1999 (04) ◽  
pp. 028-028 ◽  
Author(s):  
Dionisio Bazeia ◽  
Henrique Boschi-Filho ◽  
Francisco A Brito
Keyword(s):  

2015 ◽  
Vol 3 (2) ◽  
pp. 117 ◽  
Author(s):  
V. K. Shchigolev ◽  
E. A. Semenova

<p>The new classes of homogeneous cosmological models for the scalar fields are build in the context of Lyra’s geometry. The different types of exact solution for the model are obtained by applying two procedures, viz the generating function method and the first order formalism.</p>


Author(s):  
A. Cabo Montes de Oca ◽  
D. Suarez Fontanella

Static (not stationary) solutions of the Einstein–Klein–Gordon (EKG) equations including matter are obtained for real scalar fields. The scalar field interaction with matter is considered. The introduced coupling allows the existence of static solutions in contraposition with the case of the simpler EKG equations for real scalar fields and gravity. Surprisingly, when the considered matter is a photon-like gas, it turns out that the gravitational field intensity at large radial distances becomes nearly a constant, exerting an approximately fixed force to small bodies at any distance. The effect is clearly related with the massless character of the photon-like field. It is also argued that the gravitational field can generate a bounding attraction, that could avoid the unlimited increase in mass with the radius of the obtained here solution. This phenomenon, if verified, may furnish a possible mechanism for explaining how the increasing gravitational potential associated to dark matter, finally decays at large distances from the galaxies. A method for evaluating these photon bounding effects is just formulated in order to be further investigated.


2009 ◽  
Vol 79 (8) ◽  
Author(s):  
P. P. Avelino ◽  
D. Bazeia ◽  
R. Menezes ◽  
J. C. R. E. Oliveira
Keyword(s):  

2004 ◽  
Vol 19 (supp02) ◽  
pp. 82-91 ◽  
Author(s):  
P. BOWCOCK ◽  
E. CORRIGAN ◽  
C. ZAMBON

Some ideas and remarks are presented concerning a possible Lagrangian approach to the study of internal boundary conditions relating integrable fields at the junction of two domains. The main example given in the article concerns single real scalar fields in each domain and it is found that these may be free, of Liouville type, or of sinh-Gordon type.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850172 ◽  
Author(s):  
M. A. Valuyan

In this study, the first-order radiative correction to the Casimir energy for massive and massless scalar fields confined with mixed boundary conditions (BCs) (Dirichlet–Neumann) between two points in [Formula: see text] theory was computed. Two issues in performing the calculations in this work are essential: to renormalize the bare parameters of the problem, a systematic method was employed, allowing all influences from the BCs to be imported in all elements of the renormalization program. This idea yields our counterterms appeared in the renormalization program to be position-dependent. Using the Box Subtraction Scheme (BSS) as a regularization technique is the other noteworthy point in the calculation. In this scheme, by subtracting the vacuum energies of two similar configurations from each other, regularizing divergent expressions and their removal process were significantly facilitated. All the obtained answers for the Casimir energy with the mixed BC were consistent with well-known physical grounds. We also compared the Casimir energy for massive scalar field confined with four types of BCs (Dirichlet, Neumann, mixed of them and Periodic) in [Formula: see text] dimensions with each other, and the sign and magnitude of their values were discussed.


1997 ◽  
Vol 06 (05) ◽  
pp. 625-641 ◽  
Author(s):  
P. V. Moniz

In this paper we investigate whether conserved currents can be sensibly defined in super-symmetric minisuperspaces. Our analysis deals with k = +1 FRW and Bianchi class-A models. Supermatter in the form of scalar supermultiplets is included in the former. Moreover, we restrict ourselves to the first-order differential equations derived from the Lorentz and supersymmetry constraints. The "square-root" structure of N = 1 super-gravity was our motivation to contemplate this interesting research. We show that conserved currents cannot be adequately established except for some very simple scenarios. Otherwise, equations of the type ∇a Ja = 0 may only be obtained from Wheeler–DeWittlike equations, which are derived from the supersymmetric algebra of constraints. Two appendices are included. In Appendix A we describe some interesting features of quantum FRW cosmologies with complex scalar fields when supersymmetry is present. In particular, we explain how the Hartle–Hawking state can now be satisfactorily identified. In Appendix B we initiate a discussion about the retrieval of classical properties from supersymmetric quantum cosmologies.


Sign in / Sign up

Export Citation Format

Share Document