scholarly journals Scalar bosons under the influence of noninertial effects in the cosmic string spacetime

Author(s):  
L. C. N. Santos ◽  
C. C. Barros
2019 ◽  
Vol 16 (04) ◽  
pp. 1950054 ◽  
Author(s):  
M. Hosseini ◽  
H. Hassanabadi ◽  
S. Hassanabadi ◽  
P. Sedaghatnia

In this paper, we find solutions for the Klein–Gordon equation in the presence of a Cornell potential under the influence of noninertial effects in the cosmic string space-time. Then, we study Klein–Gordon oscillator in the cosmic string space-time. In addition, we show that the presence of a Cornell potential causes the forming bound states for the Klein–Gordon equation in this kind of background.


1998 ◽  
Vol 508 (2) ◽  
pp. 530-534 ◽  
Author(s):  
Tom Abel ◽  
Albert Stebbins ◽  
Peter Anninos ◽  
Michael L. Norman

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Yoshihiko Abe ◽  
Yu Hamada ◽  
Koichi Yoshioka

Abstract We study the axion strings with the electroweak gauge flux in the DFSZ axion model and show that these strings, called the electroweak axion strings, can exhibit superconductivity without fermionic zeromodes. We construct three types of electroweak axion string solutions. Among them, the string with W-flux can be lightest in some parameter space, which leads to a stable superconducting cosmic string. We also show that a large electric current can flow along the string due to the Peccei-Quinn scale much higher than the electroweak scale. This large current induces a net attractive force between the axion strings with the same topological charge, which opens a novel possibility that the axion strings form Y-junctions in the early universe.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Jose J. Blanco-Pillado ◽  
Ken D. Olum ◽  
Jeremy M. Wachter
Keyword(s):  

2009 ◽  
Vol 24 (08n09) ◽  
pp. 1549-1556 ◽  
Author(s):  
V. B. BEZERRA ◽  
GEUSA DE A. MARQUES

We consider the problem of a relativistic electron in the presence of a Coulomb potential and a magnetic field in the background spacetime corresponding to a cosmic string. We find the solution of the corresponding Dirac equation and determine the energy spectrum of the particle.


Author(s):  
Ricardo L. L. Vitória

Abstract We investigate rotating effects on a charged scalar field immersed in spacetime with a magnetic screw dislocation. In addition to the hard-wall potential, which we impose to satisfy a boundary condition from the rotating effect, we insert a Coulomb-type potential and the Klein–Gordon oscillator into this system, where, analytically, we obtain solutions of bound states which are influenced not only by the spacetime topology, but also by the rotating effects, as a Sagnac-type effect modified by the presence of the magnetic screw dislocation.


2020 ◽  
Vol 501 (1) ◽  
pp. 701-712
Author(s):  
N Yonemaru ◽  
S Kuroyanagi ◽  
G Hobbs ◽  
K Takahashi ◽  
X-J Zhu ◽  
...  

ABSTRACT Cosmic strings are potential gravitational-wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1 per cent. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of Gμ ∼ 10−5, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array.


Sign in / Sign up

Export Citation Format

Share Document