scholarly journals Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime

Author(s):  
L. C. N. Santos ◽  
C. C. Barros
Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 203
Author(s):  
Márcio M. Cunha ◽  
Edilberto O. Silva

In this work, we study the relativistic quantum motion of an electron in the presence of external magnetic fields in the spinning cosmic string spacetime. The approach takes into account the terms that explicitly depend on the particle spin in the Dirac equation. The inclusion of the spin element in the solution of the problem reveals that the energy spectrum is modified. We determine the energies and wave functions using the self-adjoint extension method. The technique used is based on boundary conditions allowed by the system. We investigate the profiles of the energies found. We also investigate some particular cases for the energies and compare them with the results in the literature.


2019 ◽  
Vol 34 (10) ◽  
pp. 1950056 ◽  
Author(s):  
M. A. Hun ◽  
N. Candemir

In this paper, a relativistic behavior of spin-zero bosons is studied in a chiral cosmic string space–time. The Duffin–Kemmer–Petiau (DKP) equation and DKP oscillator are written in this curved space–time and are solved by using an appropriate ansatz and the Nikiforov–Uvarov method, respectively. The influences of the topology of this space–time on the DKP spinor and energy levels and current density are also discussed in detail.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1549-1556 ◽  
Author(s):  
V. B. BEZERRA ◽  
GEUSA DE A. MARQUES

We consider the problem of a relativistic electron in the presence of a Coulomb potential and a magnetic field in the background spacetime corresponding to a cosmic string. We find the solution of the corresponding Dirac equation and determine the energy spectrum of the particle.


2019 ◽  
Vol 16 (04) ◽  
pp. 1950054 ◽  
Author(s):  
M. Hosseini ◽  
H. Hassanabadi ◽  
S. Hassanabadi ◽  
P. Sedaghatnia

In this paper, we find solutions for the Klein–Gordon equation in the presence of a Cornell potential under the influence of noninertial effects in the cosmic string space-time. Then, we study Klein–Gordon oscillator in the cosmic string space-time. In addition, we show that the presence of a Cornell potential causes the forming bound states for the Klein–Gordon equation in this kind of background.


2019 ◽  
Vol 34 (38) ◽  
pp. 1950314 ◽  
Author(s):  
Faizuddin Ahmed

In this work, we investigate the relativistic quantum dynamics of spin-0 particles in the background of (1 + 2)-dimensional Gürses spacetime [M. Gürses, Class. Quantum Grav. 11, 2585 (1994)] with interactions. We solve the Klein–Gordon equation subject to Cornell-type scalar potential in the considered framework, and evaluate the energy eigenvalues and corresponding wave functions, in detail.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Abdelmalek Boumali ◽  
Houcine Aounallah

We analyze the relativistic quantum motion of a charged scalar particles in the presence of an Aharonov-Bohm and Coulomb potentials in the space-times produced by an idealized cosmic string and global monopole. We have calculated and discussed the eigensolutions of DKP equation and their dependence on both the geometry of the space-times and coupling constants parameters.


2019 ◽  
Vol 34 (21) ◽  
pp. 1950116
Author(s):  
K. Bakke ◽  
H. Belich

We search for relativistic quantum phases for a Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string space–time under the effects of the violation of the Lorentz symmetry. This general relativity background is built based on the modified Maxwell theory coupled to gravity. Hence, we analyze analogues of the scalar Aharonov–Bohm effect for neutral particles in two different scenarios of the Lorentz symmetry violation in the cosmic string space–time.


Sign in / Sign up

Export Citation Format

Share Document