scholarly journals Observational signatures of strongly naked singularities: image of the thin accretion disk

2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Galin Gyulchev ◽  
Jutta Kunz ◽  
Petya Nedkova ◽  
Tsvetan Vetsov ◽  
Stoytcho Yazadjiev

AbstractWe study the optical appearance of a thin accretion disk around the strongly naked static Janis–Newman–Winicour singularity. The solution does not possess a photon sphere, which results in the formation of a complex structure of bright rings in the central region of the disk image. Such structure is absent in the case of the Schwarzschild black hole with a thin accretion disk, where instead of the image we observe the black hole shadow. Some of the rings emit with the maximal observable radiation flux from the accretion disk, and should be experimentally detectable. Thus, this qualitatively new feature can be used to distinguish observationally black holes from naked singularities. We elucidate the appearance of the ring structure by revealing the physical mechanism of its formation, and explaining the nature of each of the ring images. We make the conjecture that a similar structure would also appear for other solutions without a photon sphere and it can serve as a general observational signature for distinguishing compact objects possessing no photon sphere from black holes.

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Galin Gyulchev ◽  
Petya Nedkova ◽  
Tsvetan Vetsov ◽  
Stoytcho Yazadjiev

AbstractWe study the optical appearance of a thin accretion disk around compact objects within the Einstein–Gauss–Bonnet gravity. Considering static spherically symmetric black holes and naked singularities we search for characteristic signatures which can arise in the observable images due to the modification of general relativity. While the images of the Gauss–Bonnet black holes closely resemble the Schwarzschild black hole, naked singularities possess a distinctive feature. A series of bright rings are formed in the central part of the images with observable radiation $$10^3$$ 10 3 times larger than the rest of the flux making them observationally significant. We elucidate the physical mechanism, which causes the appearance of the central rings, showing that the image is determined by the light ring structure of the spacetime. In a certain region of the parametric space the Gauss–Bonnet naked singularities possess a stable and an unstable light ring. In addition the gravitational field becomes repulsive in a certain neighbourhood of the singularity. This combination of features leads to the formation of the central rings implying that the effect is not specific for the Einstein–Gauss–Bonnet gravity but would also appear for any other compact object with the same characteristics of the photon dynamics.


2014 ◽  
Vol 29 (21) ◽  
pp. 1450115
Author(s):  
Fahrettin Koyuncu ◽  
Orhan Dönmez

We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip–flop oscillation around the black holes. The flip–flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Gert Hütsi ◽  
Tomi Koivisto ◽  
Martti Raidal ◽  
Ville Vaskonen ◽  
Hardi Veermäe

AbstractWe show that the physical conditions which induce the Thakurta metric, recently studied by Bœhm et al. in the context of time-dependent black hole masses, correspond to a single accreting compact object in the entire Universe filled with isotropic non-interacting dust. In such a case, accretion physics is not local but tied to the properties of the whole Universe. We show that radiation, primordial black holes or particle dark matter cannot produce the specific energy flux required for supporting the mass growth of the compact objects described by the Thakurta metric. In particular, this solution does not apply to black hole binaries. We conclude that compact dark matter candidates and their mass growth cannot be described by the Thakurta metric, and thus existing constraints on the primordial black hole abundance from the LIGO-Virgo and the CMB measurements remain valid.


2018 ◽  
Vol 14 (S346) ◽  
pp. 1-13
Author(s):  
Edward P. J. van den Heuvel

AbstractA summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


2019 ◽  
Vol 488 (2) ◽  
pp. 2825-2835 ◽  
Author(s):  
Giacomo Fragione ◽  
Nathan W C Leigh ◽  
Rosalba Perna

ABSTRACT Nuclear star clusters that surround supermassive black holes (SMBHs) in galactic nuclei are thought to contain large numbers of black holes (BHs) and neutron stars (NSs), a fraction of which form binaries and could merge by Kozai–Lidov oscillations (KL). Triple compact objects are likely to be present, given what is known about the multiplicity of massive stars, whose life ends either as an NS or a BH. In this paper, we present a new possible scenario for merging BHs and NSs in galactic nuclei. We study the evolution of a triple black hole (BH) or neutron star (NS) system orbiting an SMBH in a galactic nucleus by means of direct high-precision N-body simulations, including post-Newtonian terms. We find that the four-body dynamical interactions can increase the KL angle window for mergers compared to the binary case and make BH and NS binaries merge on shorter time-scales. We show that the merger fraction can be up to ∼5–8 times higher for triples than for binaries. Therefore, even if the triple fraction is only ∼10–$20\rm{\,per\,cent}$ of the binary fraction, they could contribute to the merger events observed by LIGO/VIRGO in comparable numbers.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Shahar Hod

AbstractThe hoop conjecture, introduced by Thorne almost five decades ago, asserts that black holes are characterized by the mass-to-circumference relation $$4\pi {\mathcal {M}}/{\mathcal {C}}\ge 1$$ 4 π M / C ≥ 1 , whereas horizonless compact objects are characterized by the opposite inequality $$4\pi {\mathcal {M}}/{\mathcal {C}}<1$$ 4 π M / C < 1 (here $${\mathcal {C}}$$ C is the circumference of the smallest ring that can engulf the self-gravitating compact object in all azimuthal directions). It has recently been proved that a necessary condition for the validity of this conjecture in horizonless spacetimes of spatially regular charged compact objects is that the mass $${\mathcal {M}}$$ M be interpreted as the mass contained within the engulfing sphere (and not as the asymptotically measured total ADM mass). In the present paper we raise the following physically intriguing question: is it possible to formulate a unified version of the hoop conjecture which is valid for both black holes and horizonless compact objects? In order to address this important question, we analyze the behavior of the mass-to-circumference ratio of Kerr–Newman black holes. We explicitly prove that if the mass $${\mathcal {M}}$$ M in the hoop relation is interpreted as the quasilocal Einstein–Landau–Lifshitz–Papapetrou and Weinberg mass contained within the black-hole horizon, then these charged and spinning black holes are characterized by the sub-critical mass-to-circumference ratio $$4\pi {\mathcal {M}}/{\mathcal {C}}<1$$ 4 π M / C < 1 . Our results provide evidence for the non-existence of a unified version of the hoop conjecture which is valid for both black-hole spacetimes and spatially regular horizonless compact objects.


2008 ◽  
Vol 4 (S259) ◽  
pp. 125-126 ◽  
Author(s):  
Zdeněk Stuchlík ◽  
Jiří Kovář ◽  
Vladimír Karas

AbstractWe present results of investigation of the off-equatorial circular orbits existence in the vicinity of neutron stars, Schwarzschild black holes with plasma ring, and near Kerr-Newman black holes and naked singularities.


Sign in / Sign up

Export Citation Format

Share Document