scholarly journals Holographic complexity of the electromagnetic black hole

Author(s):  
Jie Jiang ◽  
Ming Zhang

Abstract In this paper, we use the “complexity equals action” (CA) conjecture to evaluate the holographic complexity in some multiple-horzion black holes for the gravitational theory coupled to a first-order source-free electrodynamics. Motivated by the vanishing result of the purely magnetic black hole founded by Goto et al., we investigate the complexity in a static charged black hole with source-free electrodynamics and find that this vanishing feature of the late-time rate is universal for a purely static magnetic black hole. But this result shows some unexpected features of the late-time growth rate. We show how the inclusion of a boundary term for the first-order electromagnetic field to the total action can make the holographic complexity be well-defined and obtain a general expression of the late-time complexity growth rate with these boundary terms. However, the choice of these additional boundary terms is dependent on the specific gravitational theory as well as the black hole geometries. To show this, we apply our late-time result to some explicit cases and show how to choose the proportional constant of the additional boundary term to make the complexity be well-defined in the zero-charge limit. Typically, we investigate the static magnetic black holes in Einstein gravity coupled to a first-order electrodynamics and find that there is a general relationship between the proper proportional constant and the Lagrangian function $$h(\mathcal {F})$$h(F) of the electromagnetic field: if $$h(\mathcal {F})$$h(F) is a convergent function, the choice of the proportional constant is independent on explicit expressions of $$h(\mathcal {F})$$h(F) and it should be chosen as 4/3; if $$h(\mathcal {F})$$h(F) is a divergent function, the proportional constant is dependent on the asymptotic index of the Lagrangian function.

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Rong-Gen Cai ◽  
Song He ◽  
Shao-Jiang Wang ◽  
Yu-Xuan Zhang

Abstract We revisit the late-time growth rate of various holographic complexity conjectures for neutral and charged AdS black holes with single or multiple horizons in two dimensional (2D) gravity like Jackiw-Teitelboim (JT) gravity and JT-like gravity. For complexity-action conjecture, we propose an alternative resolution to the vanishing growth rate at late-time for general 2D neutral black hole with multiple horizons as found in the previous studies for JT gravity. For complexity-volume conjectures, we obtain the generic forms of late-time growth rates in the context of extremal volume and Wheeler-DeWitt volume by appropriately accounting for the black hole thermodynamics in 2D gravity.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Mykola M. Stetsko

Scalar–tensor theory of gravity with nonlinear electromagnetic field, minimally coupled to gravity is considered and static black hole solutions are obtained. Namely, power-law and Born–Infeld nonlinear Lagrangians for the electromagnetic field are examined. Since the cosmological constant is taken into account, it allowed us to investigate the so-called topological black holes. Black hole thermodynamics is studied, in particular temperature of the black holes is calculated and examined and the first law of thermodynamics is obtained with help of Wald’s approach.


2007 ◽  
Vol 16 (07) ◽  
pp. 1211-1218 ◽  
Author(s):  
PING XI ◽  
XIN-ZHOU LI

In this paper, we investigate the evolution of classical wave propagation in the canonical acoustic black hole by a numerical method and discuss the details of the tail phenomenon. The oscillating frequency and damping time scale both increase with the angular momentum l. For lower l, numerical results show the lowest WKB approximation gives the most reliable result. We also find that the time scale of the interim region from ringing to tail is not affected obviously by changing l.


2009 ◽  
Vol 5 (S267) ◽  
pp. 213-222
Author(s):  
Hagai Netzer

This review summarizes the important properties of active black holes (BHs) up to z ~ 2; their mass, accretion rate, and growth rate. At higher redshifts, such information is only available for small samples that do not represent the entire population of active galactic nuclei (AGNs). Black hole spin is still unknown; it is speculated to change with redshift, but with little experimental evidence. The available data sets also enable a direct comparison of BH accretion rates and host galaxy star-formation rates (SFRs). The ratio of the BH growth rate g(BH) and the bulge growth rate g(bulge), suggests that the two are proportional to each other. The local value of g(bulge)/g(BH) in low-luminosity AGNs is of order 100 and the corresponding ratio in high-luminosity, high-redshift AGNs is of order 10. This has important implications regarding the parallel evolution of active BHs and their hosts.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050193
Author(s):  
Cai-Ying Shao ◽  
Yu Hu ◽  
Yu-Jie Tan ◽  
Cheng-Gang Shao ◽  
Kai Lin ◽  
...  

In this paper, we study the quasinormal modes of the massless Dirac field for charged black holes in Rastall gravity. The spherically symmetric black hole solutions in question are characterized by the presence of a power-Maxwell field, surrounded by the quintessence fluid. The calculations are carried out by employing the WKB approximations up to the 13th-order, as well as the matrix method. The temporal evolution of the quasinormal modes is investigated by using the finite difference method. Through numerical simulations, the properties of the quasinormal frequencies are analyzed, including those for the extremal black holes. Among others, we explore the case of a second type of extremal black holes regarding the Nariai solution, where the cosmical and event horizon coincide. The results obtained by the WKB approaches are found to be mostly consistent with those by the matrix method. It is observed that the magnitudes of both real and imaginary parts of the quasinormal frequencies increase with increasing [Formula: see text], the spin–orbit quantum number. Also, the roles of the parameters [Formula: see text] and [Formula: see text], associated with the electric charge and the equation of state of the quintessence field, respectively, are investigated regarding their effects on the quasinormal frequencies. The magnitude of the electric charge is found to sensitively affect the time scale of the first stage of quasinormal oscillations, after which the temporal oscillations become stabilized. It is demonstrated that the black hole solutions for Rastall gravity in asymptotically flat spacetimes are equivalent to those in Einstein gravity, featured by different asymptotical spacetime properties. As one of its possible consequences, we also investigate the behavior of the late-time tails of quasinormal models in the present model. It is found that the asymptotical behavior of the late-time tails of quasinormal modes in Rastall theory is governed by the asymptotical properties of the spacetimes of their counterparts in Einstein gravity.


2008 ◽  
Vol 17 (11) ◽  
pp. 2065-2078
Author(s):  
JILIANG JING ◽  
QIYUAN PAN ◽  
CHIKUN DING

The late-time evolution of massive Dirac fields in the backgrounds of brane-world black holes is investigated. We find that the dumping exponent depends on both the multiple number of the wave mode and the mass of the Dirac fields, but almost does not depend on the parameter ϒ of the brane-world black holes. We also find that the decay rate of the asymptotic late-time tail is t-5/6. Our results show that the decay of massive Dirac hairs on brane-world black holes has the same behavior as that of the Schwarzschild black hole.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Zachary Elgood ◽  
Tomás Ortín ◽  
David Pereñíguez

Abstract We derive the first law of black hole mechanics in the context of the Heterotic Superstring effective action to first order in α′ using Wald’s formalism. We carefully take into account all the symmetries of the theory and, as a result, we obtain a manifestly gauge- and Lorentz-invariant entropy formula in which all the terms can be computed explicitly. An entropy formula with these properties allows unambiguous calculations of macroscopic black-hole entropies to first order in α′ that can be reliably used in a comparison with the microscopic ones. Such a formula was still lacking in the literature.In the proof we use momentum maps to define covariant variations and Lie derivatives and restricted generalized zeroth laws which state the closedness of certain differential forms on the bifurcation sphere and imply the constancy of the associated potentials on it.We study the relation between our entropy formula and other formulae that have been used in the literature.


2021 ◽  
Vol 36 (26) ◽  
pp. 2150191
Author(s):  
Gao-Ming Deng ◽  
Jinbo Fan ◽  
Xinfei Li

As an intriguing topological defect, global monopole’s influence on behaviors of black holes has always been anticipated but still remains obscure. Analyzing the thermodynamics of charged Anti-de Sitter (AdS) black hole incorporating a global monopole manifests that the black hole undergoes a Van der Waals-like first-order phase transition near the critical point. This paper concentrates on further investigating the transition, aiming at clarifying how the global monopole affects the criticality and microstructure of the charged AdS black holes. As a highlight, this research is implemented by employing new state parameters other than (T, P, V) description and contributes to deeper understanding the rich critical phenomena and phase structure of black holes.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Meng-Shi Hou ◽  
Hao Xu ◽  
Yen Chin Ong

AbstractWe study the Hawking evaporation of a class of black hole solutions in dRGT massive gravity, in which the graviton mass gives rise to an effective negative cosmological constant. We found that the effective emission surface can be either proportional to the square of the effective AdS length scale, or corresponds to the square of the impact parameter of the null geodesic that falls onto the photon orbit of the black hole. Furthermore, depending on the black hole parameters, the emission surface could switch from one to another as the black hole loses mass during the evaporation process. Furthermore, the black holes can either evaporate completely or become a remnant at late time. Our result is more generally applicable to any asymptotically anti-de Sitter-like black hole solution in any theory whose metric function has a term linear in the coordinate radius, with massive gravity being only a concrete example.


Author(s):  
Yong Xiao ◽  
Longting Zhang

Abstract The infinite derivative theory of gravity is a generalization of Einstein gravity with many interesting properties, but the black hole solutions in this theory are still not fully understood. In the paper, we concentrate on studying the charged black holes in such a theory. Adding the electromagnetic field part to the effective action, we show how the black hole solutions around the Reissner-Nordstr{\"o}m metric can be solved perturbatively and iteratively. We further calculate the corresponding temperature, entropy and electrostatic potential of the black holes and verify the first law of thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document