scholarly journals Perturbative deflection angle, gravitational lensing in the strong field limit and the black hole shadow

2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Junji Jia ◽  
Ke Huang

AbstractA perturbative method to compute the deflection angle of both timelike and null rays in arbitrary static and spherically symmetric spacetimes in the strong field limit is proposed. The result takes a quasi-series form of $$(1-b_c/b)$$ ( 1 - b c / b ) where b is the impact parameter and $$b_c$$ b c is its critical value, with coefficients of the series explicitly given. This result also naturally takes into account the finite distance effect of both the source and detector, and allows to solve the apparent angles of the relativistic images in a more precise way. From this, the BH angular shadow size is expressed as a simple formula containing metric functions and particle/photon sphere radius. The magnification of the relativistic images were shown to diverge at different values of the source-detector angular coordinate difference, depending on the relation between the source and detector distance from the lens. To verify all these results, we then applied them to the Hayward BH spacetime, concentrating on the effects of its charge parameter l and the asymptotic velocity v of the signal. The BH shadow size were found to decrease slightly as l increases to its critical value, and increase as v decreases from light speed. For the deflection angle and the magnification of the images however, both the increase of l and decrease of v will increase their values.

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Haotian Liu ◽  
Junji Jia

AbstractGravitational lensing can happen not only for null signals but also timelike signals such as neutrinos and massive gravitational waves in some theories beyond GR. In this work we study the time delay between different relativistic images formed by signals with arbitrary asymptotic velocity v in general static and spherically symmetric spacetimes. A perturbative method is used to calculate the total travel time in the strong field limit, which is found to be a quasi-power series of the small parameter $$a=1-b_c/b$$ a = 1 - b c / b where b is the impact parameter and $$b_c$$ b c is its critical value. The coefficients of the series are completely fixed by the behaviour of the metric functions near the particle sphere $$r_c$$ r c and only the first term of the series contains a weak logarithmic divergence. The time delay $$\Delta t_{n,m}$$ Δ t n , m to the leading non-trivial order was shown to equal the particle sphere circumference divided by the local signal velocity and multiplied by the winding number and the redshift factor. By assuming the Sgr A* supermassive black hole is a Hayward one, we were able to validate the quasi-series form of the total time, and reveal the effects of the spacetime parameter l, the signal velocity v and the source/detector coordinate difference $$\Delta \phi _{sd}$$ Δ ϕ sd on the time delay. It is found that as l increases from 0 to its critical value $$l_c$$ l c , both $$r_c$$ r c and $$\Delta t_{n,m}$$ Δ t n , m decrease. The variation of $$\Delta t_{n+1,n}$$ Δ t n + 1 , n for l from 0 to $$l_c$$ l c can be as large as $$7.2\times 10^1$$ 7.2 × 10 1 [s], whose measurement then can be used to constrain the value of l. While for ultra-relativistic neutrino or gravitational wave, the variation of $$\Delta t_{n,m}$$ Δ t n , m is too small to be resolved. The dependence of $$\Delta t_{n,-n}$$ Δ t n , - n on $$\Delta \phi _{sd}$$ Δ ϕ sd shows that to temporally resolve the two sequences of images from opposite sides of the lens, $$|\Delta \phi _{sd}-\pi |$$ | Δ ϕ sd - π | has to be larger than a certain value, or equivalently if $$|\Delta \phi _{sd}-\pi |$$ | Δ ϕ sd - π | is small, the time resolution of the observatories has to be good.


Author(s):  
Nisha Godani ◽  
Gauranga C. Samanta

This paper is focused on the study of charged wormholes which are combinations of Morris–Thorne wormhole and Reissner–Nordström spacetime. Gravitational lensing is an important tool which has been adopted to detect various objects like wormholes using the notion of deflection angle. In this work, we have evaluated deflection angle with and without using the strong field limit coefficients and compared the results. Further, exact charged wormhole solutions are obtained in [Formula: see text] gravity and the nature of the energy conditions is examined.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850110 ◽  
Author(s):  
Lu Zhang ◽  
Songbai Chen ◽  
Jiliang Jing

In this paper, we have investigated the gravitational lensing in a spherically symmetric spacetime with torsion in the generalized Einstein–Cartan–Kibble–Sciama (ECKS) theory of gravity by considering higher order terms. The torsion parameters change the spacetime structure, which affects the photon sphere, the deflection angle and the strong gravitational lensing. The condition of existence of horizons is not inconsistent with that of the photon sphere. Especially, there exists a novel case in which there is horizon but no photon sphere for the considered spacetime. In this special case, the deflection angle of the light ray near the event horizon also diverges logarithmically, but the coefficients in the strong-field limit are different from those in the cases with photon sphere. Moreover, in the far-field limit, we find that the deflection angle for certain torsion parameters approaches zero from the negative side, which is different from those in the usual spacetimes.


Author(s):  
Nisha Godani ◽  
Gauranga C. Samanta

This work is focused on the study of charged wormholes in the following two aspects: (i) to obtain exotic matter free effective charged wormhole solutions and (ii) to determine deflection angle for gravitational lensing effect. We have defined a novel redshift function, obtained wormhole solutions using the background of [Formula: see text] theory of gravity and found the regions obeying the weak energy condition. Further, the gravitational lensing effect is analyzed by determining the deflection angle in terms of strong field limit coefficients.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole.


Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


2001 ◽  
Vol 33 (9) ◽  
pp. 1535-1548 ◽  
Author(s):  
V. Bozza ◽  
S. Capozziello ◽  
G. Iovane ◽  
G. Scarpetta

Sign in / Sign up

Export Citation Format

Share Document