scholarly journals Bumblebee gravity with a Kerr–Sen like solution and its Shadow

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Sohan Kumar Jha ◽  
Anisur Rahaman

AbstractWe have considered the bumblebee gravity model where lorentz-violating (LV) scenario gets involved through a bumblebee field vector field $$B_\mu $$ B μ . A spontaneous symmetry breaking allows the field to acquires a vacuum expectation value that generates LV into the system. A Kerr–Sen-like solution has been found out starting from the generalized form of a radiating stationery axially symmetric black hole metric. We compute the effective potential offered by the null geodesics in the bumblebee rotating black hole spacetime. The shadow has been sketched for different variations of the parameters involved in the system. A careful investigation has been carried out to study how the shadow gets affected when Lorentz violation enters into the picture. The emission rate of radiation has also been studied and how it varies with the LV parameter $$\ell $$ ℓ is studied scrupulously.

2021 ◽  
Vol 2021 (12) ◽  
pp. 002
Author(s):  
R.A. Konoplya ◽  
J. Kunz ◽  
A. Zhidenko

Abstract We consider the Blandford-Znajek process of electromagnetic extraction of energy from a general axially symmetric asymptotically flat slowly rotating black hole. Using the general parametrization of the black-hole spacetime we construct formulas for the flux of the magnetic field and the rate of energy extraction, which are valid not only for the Kerr spacetime, but also for its arbitrary axially symmetric deformations. We show that in the dominant order these quantities depend only on a single deformation parameter, which relates the spin frequency of a black hole with its rotation parameter.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450151
Author(s):  
O. B. Zaslavskii

We consider collision of two particles in the axially symmetric black hole metric in the magnetic field. If the value of the angular momentum |L| of one particles grows unbound (but its Killing energy remains fixed) one can achieve unbound energy in the center-of-mass frame E c.m. In the absence of the magnetic field, collision of this kind is known to happen in the ergoregion. However, if the magnetic field strength B is also large, with the ratio |L|/B being finite, large E c.m. can be achieved even far from a black hole, in the almost flat region. Such an effect also occurs in the metric of a rotating star.


Author(s):  
Ali Övgün

This letter aims to show the connection between the sinc approximation for high-energy absorption cross section and the shadow radius of the spherically symmetric black hole. This connection can give a physical interpretation of the absorption cross section in the eikonal limit parameters. Moreover, the use of this alternative way, one can extract its shadow radius from the absorption cross section in high energy limits to gain more information about the black hole spacetime. Our results indicate that the increasing the value of the shadow radius of the black hole, exponentially increase the the absorption cross section of the black hole in high-energy limits which can be captured by the Event Horizon Telescope (EHT) collaboration.


2019 ◽  
Vol 99 (2) ◽  
Author(s):  
Wojciech Kulczycki ◽  
Patryk Mach ◽  
Edward Malec

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Piyabut Burikham ◽  
Supakchai Ponglertsakul ◽  
Taum Wuthicharn

AbstractA number of near-extremal conditions are utilized to simplify the equation of motion of the neutral scalar perturbations in generalized spherically symmetric black hole background into a differential equation with the Pöschl–Teller potential. An analytic formula for quasinormal frequencies is obtained. The analytic formula is then used to investigate strong cosmic censorship conjectures (SCC) of the generalized black hole spacetime for the smooth initial data. The Christodoulou version of the SCC is found to be violated for certain regions of the black hole parameter space including the black holes in general relativity while the $$C^{1}$$ C 1 version of the SCC is always valid.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050013 ◽  
Author(s):  
T. R. Govindarajan ◽  
Sumanta Chakraborty

It is known that static and spherically symmetric black hole solutions of general relativity in different spacetimes can be embedded into higher-dimensional flat spacetime. Given this result, we have explored the thermodynamic nature of black holes á la its embedding into flat spacetime. In particular, we have explicitly demonstrated that black hole temperature can indeed be determined starting from the embedding and hence mapping of the static observers in black hole spacetime to Rindler observers in flat spacetime. Furthermore, by considering the dynamics of a scalar field in the flat spacetime, it is indeed possible to arrive at the area scaling law for black hole entropy. Thus, by using the flat spacetime field theory, one can indeed provide a thermodynamic description of black holes. Implications are also discussed.


2019 ◽  
Vol 34 (23) ◽  
pp. 1950184 ◽  
Author(s):  
Muhammad Rizwan ◽  
Muhammad Zubair Ali ◽  
Ali Övgün

In this paper, we study the tunneling of charged fermions from the stationary axially symmetric black holes using the generalized uncertainty principle (GUP) via Wentzel, Kramers, and Brillouin (WKB) method. The emission rate of the charged fermions and corresponding modified Hawking temperature of Kerr–Newman black hole, Einstein–Maxwell-dilaton-axion (EMDA) black hole, Kaluza–Klein dilaton black hole, and then, charged rotating black string are obtained and we show that the corrected thermal spectrum is not purely thermal because of the minimal scale length which cause the black hole’s remnant.


Author(s):  
Ming Zhang ◽  
Minyong Guo

Abstract The relation between the black hole shadow and the black hole thermodynamics is investigated. We find that the phase structure can be reflected by the shadow radius for the spherically symmetric black hole. We also find that the shadow size gives correct information but the distortion of the shadow gives wrong information of the phase structure for the axially symmetric black hole.


Author(s):  
Michael Kachelriess

Noethers theorem shows that continuous global symmetries lead classically to conservation laws. Such symmetries can be divided into spacetime and internal symmetries. The invariance of Minkowski space-time under global Poincaré transformations leads to the conservation of the four-momentum and the total angular momentum. Examples for conserved charges due to internal symmetries are electric and colour charge. The vacuum expectation value of a Noether current is shown to beconserved in a quantum field theory if the symmetry transformation keeps the path-integral measure invariant.


Sign in / Sign up

Export Citation Format

Share Document