scholarly journals Optical and thermodynamic properties of a rotating dyonic black hole spacetime in $${\mathcal {N}} = 2, U(1)^2$$ gauged supergravity

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Prateek Sharma ◽  
Hemwati Nandan ◽  
Uma Papnoi ◽  
Arindam Kumar Chatterjee

AbstractThe null geodesics and the distance of closest approach for photon around a rotating dyonic black hole in $${\mathcal {N}} = 2, U(1)^2$$ N = 2 , U ( 1 ) 2 gauged supergravity is studied. The phenomenon of black hole shadows with various black hole parameters has also analyzed. Further, the investigation of various thermodynamic properties for this black hole is performed with various thermodynamic parameters at the horizon. The heat capacity to study the thermodynamic stability of this black hole spacetime is also studied. The influence for different values of the black hole parameters $$ \nu $$ ν , e, $$ \nu $$ ν , g and $$N_{g}$$ N g on the phenomenon of black hole shadows and thermodynamic parameters is also investigated visually.

2018 ◽  
Vol 27 (04) ◽  
pp. 1850048
Author(s):  
Xudong Meng ◽  
Ruihong Wang

We study the thermodynamic properties of the black hole derived in Hořava–Lifshitz (HL) gravity without the detailed-balance condition. The parameter [Formula: see text] in the HL black hole plays the same role as that of the electric charge in the Reissner–Nordström-anti-de Sitter (RN-AdS) black hole. By analogy, we treat the parameter [Formula: see text] as the thermodynamic variable and obtain the first law of thermodynamics for the HL black hole. Although the HL black hole and the RN-AdS black hole have the similar mass and temperature, due to their very different entropy, the two black holes have very different thermodynamic properties. By calculating the heat capacity and the free energy, we analyze the thermodynamic stability of the HL black hole.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2016 ◽  
Vol 32 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Huai-Fan Li ◽  
Meng-Sen Ma ◽  
Ya-Qin Ma

We study the thermodynamic properties of Schwarzschild–de Sitter (SdS) black hole and Reissner–Nordström–de Sitter (RNdS) black hole in view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.


2017 ◽  
Vol 26 (03) ◽  
pp. 1750018 ◽  
Author(s):  
Meng-Sen Ma ◽  
Yan-Song Liu ◽  
Huai-Fan Li

In two frameworks, we discuss the thermodynamic stability of noncommutative geometry inspired Schwarzschild black hole (NCSBH). Under the horizon thermodynamics of black holes, we show that the NCSBH cannot be thermodynamically stable if requiring positive temperature. We note the inconsistency in the work of Larrañaga et al. and propose an effective first law of black hole thermodynamics for the NCSBH to eliminate the inconsistency. Based on the effective first law, we recalculate the heat capacity and the thermodynamic curvature by means of geometrothermodynamics (GTD) to revisit the thermodynamic stability.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ren Zhao ◽  
Mengsen Ma ◽  
Huihua Zhao ◽  
Lichun Zhang

It is wellknown that there are two horizons for the Reissner-Nordstrom-de Sitter spacetime, namely, the black hole horizon and the cosmological one. Both horizons can usually seem to be two independent thermodynamic systems; however, the thermodynamic quantities on both horizons satisfy the laws of black hole thermodynamics and are not independent. In this paper by considering the relations between the two horizons we give the effective thermodynamic quantities in Reissner-Nordstrom-de Sitter spacetime. The thermodynamic properties of these effective quantities are analyzed; moreover, the critical temperature, critical pressure, and critical volume are obtained. We also discussed the thermodynamic stability of Reissner-Nordstrom-de Sitter spacetime.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
G. V. Kraniotis

AbstractWe investigate the redshift and blueshift of light emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specifically we compute the redshift and blueshift of photons that are emitted by geodesic massive particles and travel along null geodesics towards a distant observer-located at a finite distance from the KN(a)dS black hole. For this purpose we use the killing-vector formalism and the associated first integrals-constants of motion. We consider in detail stable timelike equatorial circular orbits of stars and express their corresponding redshift/blueshift in terms of the metric physical black hole parameters (angular momentum per unit mass, mass, electric charge and the cosmological constant) and the orbital radii of both the emitter star and the distant observer. These radii are linked through the constants of motion along the null geodesics followed by the photons since their emission until their detection and as a result we get closed form analytic expressions for the orbital radius of the observer in terms of the emitter radius, and the black hole parameters. In addition, we compute exact analytic expressions for the frame dragging of timelike spherical orbits in the KN(a)dS spacetime in terms of multivariable generalised hypergeometric functions of Lauricella and Appell. We apply our exact solutions of timelike non-spherical polar KN geodesics for the computation of frame-dragging, pericentre-shift, orbital period for the orbits of S2 and S14 stars within the $$1^{\prime \prime }$$ 1 ″ of SgrA*. We solve the conditions for timelike spherical orbits in KN(a)dS and KN spacetimes. We present new, elegant compact forms for the parameters of these orbits. Last but not least we derive a very elegant and novel exact formula for the periapsis advance for a test particle in a non-spherical polar orbit in KNdS black hole spacetime in terms of Jacobi’s elliptic function sn and Lauricella’s hypergeometric function $$F_D$$ F D .


Author(s):  
Keisuke Nakashi ◽  
Shinpei Kobayashi ◽  
Shu Ueda ◽  
Hiromi Saida

Abstract We study the null geodesics in a static circularly symmetric (SCS) black hole spacetime, which is a solution in the $(2+1)$D massive gravity proposed by Bergshoeff, Hohm, and Townsend (BHT massive gravity). We obtain analytic solutions for the null geodesic equation in the SCS black hole background and find the explicit form of deflection angles. We see that, for various values of the impact parameter, the deflection angle can be positive, negative, or even zero in this black hole spacetime. The negative deflection angle indicates the repulsive behavior of the gravity that comes from the gravitational hair parameter that is the most characteristic quantity of the BHT massive gravity.


2016 ◽  
Vol 48 (4) ◽  
Author(s):  
Ravi Shankar Kuniyal ◽  
Rashmi Uniyal ◽  
Hemwati Nandan ◽  
K. D. Purohit

1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


Sign in / Sign up

Export Citation Format

Share Document