scholarly journals Precision luminosity measurement in proton–proton collisions at $$\sqrt{s} = 13\,\hbox {TeV}$$ in 2015 and 2016 at CMS

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
J. W. Andrejkovic ◽  
T. Bergauer ◽  
...  

AbstractThe measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton–proton collisions at $$\sqrt{s}=13\,{\text {TeV}} $$ s = 13 TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 $$\,\text {fb}^{-1}$$ fb - 1 in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders.

Author(s):  
Michael E. Peskin

This chapter discusses the properties of proton-proton collision events at high energy and the predictions of QCD. It describes the prediction of jet production in proton-proton collisions and the comparison of this prediction to experiment.


2014 ◽  
Vol 29 (23) ◽  
pp. 1430041 ◽  
Author(s):  
Andrew Askew ◽  
Sushil Chauhan ◽  
Björn Penning ◽  
William Shepherd ◽  
Mani Tripathi

Theoretical and experimental techniques employed in dedicated searches for dark matter at hadron colliders are reviewed. Bounds from the 7 TeV and 8 TeV proton–proton collisions at the Large Hadron Collider (LHC) on dark matter interactions have been collected and the results interpreted. We review the current status of the Effective Field Theory picture of dark matter interactions with the Standard Model. Currently, LHC experiments have stronger bounds on operators leading to spin-dependent scattering than direct detection experiments, while direct detection probes are more constraining for spin-independent scattering for WIMP masses above a few GeV.


Sign in / Sign up

Export Citation Format

Share Document