scholarly journals Fuzzy dark matter black holes and droplets

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
D. Batic ◽  
D. Asem Abuhejleh ◽  
M. Nowakowski

AbstractWe consider the possibility of having Dark Matter (DM) black holes motivated by the Einasto density profile. This generalizes both the noncommutative mini black hole model and allows DM to enter as the matter constituent which makes up the black hole. We show that it is possible to construct a black hole solution for each value of the Einasto index and for different values of the mass parameter, provided that the we work with the energy–momentum tensor of an anisotropic fluid. In particular, we achieve that by first considering the equation of state (EOS) $$p_r=-\rho $$ p r = - ρ . It turns out that the corresponding black hole solution exhibits a horizon structure similar to that of a Reissner–Nordström black hole and the central singularity is replaced by a regular de Sitter core. We also show that if the previous EOS is replaced by a nonlocal one, it is possible to construct a self-gravitating fuzzy DM droplet but also in this case, the radial pressure is negative. Finally, we contemplate scenarios of different dark matter black holes with moderate mass values which could have formed in galaxies. In particular, we probe the possibility whether such black holes could also be the central galactic objects.

2021 ◽  
Vol 2021 (11) ◽  
pp. 059
Author(s):  
Z. Stuchlík ◽  
J. Vrba

Abstract Recently introduced exact solution of the Einstein gravity coupled minimally to an anisotropic fluid representing dark matter can well represent supermassive black holes in galactic nuclei with realistic distribution of dark matter around the black hole, given by the Hernquist-like density distribution. For these fluid-hairy black hole spacetimes, properties of the gravitational radiation, quasinormal ringing, and optical phenomena were studied, giving interesting results. Here, using the range of physical parameters of these spacetimes allowing for their relevance in astrophysics, we study the epicyclic oscillatory motion of test particles in these spacetimes. The frequencies of the orbital and epicyclic motion are applied in the epicyclic resonance variant of the geodesic model of quasiperiodic oscillations (QPOs) observed in active galactic nuclei to demonstrate the possibility to solve the cases where the standard vacuum black hole spacetimes are not allowing for explanation of the observed data. We demonstrate that the geodesic model can explain the QPOs observed in most of the active galactic nuclei for the fluid-hairy black holes with reasonable halo parameters.


2021 ◽  
pp. 2150207
Author(s):  
Zi-Yu Fu ◽  
Bao-Qi Zhang ◽  
Chuan-Yin Wang ◽  
Hui-Ling Li

By analyzing the energy–momentum relationship of the absorbed fermions dropping into a Reissner–Nordstöm–anti-de Sitter black hole surrounded by dark matter, the laws of thermodynamic and weak cosmic censorship conjecture in the extended phase space are investigated. We find that the first law of thermodynamics is valid. However, the validity of the second law of thermodynamics depends on the density [Formula: see text] of the perfect fluid dark matter. In addition, we also find that when the fermions are absorbed, the structures of black hole surrounded by dark matter would not change. Therefore, weak cosmic censorship conjecture holds for the extreme black holes and the non-extreme black holes.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Anna Nakonieczna ◽  
Łukasz Nakonieczny

AbstractThe objective of the paper was to examine gravitational evolutions in the Higgs-dark matter sector toy model. The real part of the Higgs doublet was modelled by a neutral scalar. Two dark matter candidates introduced were the dark photon and a charged complex scalar. Non-minimal couplings of both scalars to gravity were included. The coupling channels between the ordinary and dark matter sectors were kinetic mixing between the electromagnetic and dark U(1) fields and the Higgs portal coupling among the scalars. The structures of emerging singular spacetimes were either of Schwarzschild or Reissner–Nordström types. The non-minimal scalar–gravity couplings led to an appearance of timelike portions of apparent horizons where they transform from spacelike to null. The features of dynamical black holes were described as functions of the model parameters. The black holes formed later and their radii and masses were smaller as the mass parameter of the complex scalar increased. The dependencies on the coupling of the Higgs field to gravity exhibited extrema, which were a maximum for the time of the black holes formation and minima in the cases of their radii and masses. A set of quantities associated with an observer moving with the evolving matter was proposed. The energy density, radial pressure and pressure anisotropy within dynamical spacetimes get bigger as the singularity is approached. The increase is more considerable in the Reissner–Nordström spacetimes. The apparent horizon local temperature changes monotonically in the minimally coupled case and non-monotonically when non-minimal scalar–gravity couplings are involved.


Author(s):  
Suddhasattwa Brahma ◽  
Dong-han Yeom

Abstract We investigate a regular black hole model with a de Sitter-like core at its center. This type of a black hole model with a false vacuum core was introduced with the hope of singularity-resolution and is a common feature shared by many regular black holes. In this paper, we examine this claim of a singularity-free black hole by employing the thin-shell formalism, and exploring its dynamics, within the Vaidya approximation. We find that during gravitational collapse, the shell necessarily moves along a space-like direction. More interestingly, during the evaporation phase, the shell and the outer apparent horizon approach each other but, unless the evaporation takes place very rapidly, the approaching tendency is too slow to avoid singularity-formation. This shows that albeit a false vacuum core may remove the singularity along the ingoing null direction, there still exists a singularity along the outgoing null direction, unless the evaporation is very strong.


Author(s):  
S. Habib Mazharimousavi

Recently, the inverse electrodynamics model (IEM) was introduced and applied to find Reissner–Nordström black holes in the context of the general relativity coupled minimally with the nonlinear electrodynamics. The solution consists of both electric and magnetic fields as of the dyonic solutions. Here, in this note, we show that the IEM model belongs to a more general class of the nonlinear electrodynamics with [Formula: see text]. Here, [Formula: see text] is the energy momentum tensor of the nonlinear electrodynamic Lagrangian. Naturally, such a dyonic RN black hole solution is the solution for this general class.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950231 ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar

The phase structure of charged anti-de Sitter black hole in massive gravity is investigated using the unstable circular photon orbits formalism, concretely we establish a direct link between the null geodesics and the critical behavior thermodynamic of such black hole solution. Our analysis reveals that the radius and the impact parameter corresponding to the unstable circular orbits can be used to probe the thermodynamic phase structure. We also show that the latter are key quantities to characterize the order of Van der Waals-like phase transition. Namely, we found a critical exponent around [Formula: see text]. All these results support further that the photon trajectories can be used as a useful and crucial tool to probe the thermodynamic black holes criticality.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Marek Rogatko

AbstractThe Arnowitt–Deser–Misner formalism is used to derive variations of mass, angular momentum and canonical energy for Einstein–Maxwell dark matter gravity in which the auxiliary gauge field coupled via kinetic mixing term to the ordinary Maxwell one, which mimics properties of hidden sector. Inspection of the initial data for the manifold with an interior boundary, having topology of $$S^2$$ S 2 , enables us to find the generalised first law of black hole thermodynamics in the aforementioned theory. It has been revealed that the stationary black hole solution being subject to the condition of encompassing a bifurcate Killing horizon with a bifurcation sphere, which is non-rotating, must be static and has vanishing magnetic Maxwell and dark matter sector fields, on static slices of the spacetime under consideration.


2014 ◽  
Vol 11 (05) ◽  
pp. 1450047 ◽  
Author(s):  
A. Belhaj ◽  
M. Chabab ◽  
H. El Moumni ◽  
M. B. Sedra ◽  
A. Segui

Inspired from the inflation brane world cosmology, we study the thermodynamics of a black hole solution in two-dimensional dilaton gravity with an arctangent potential background. We first derive the two-dimensional black hole geometry, then we examine its asymptotic behaviors. More precisely, we find that such behaviors exhibit properties appearing in some known cases including the anti-de Sitter and the Schwarzschild black holes. Using the complex path method, we compute the Hawking radiation. The entropy function can be related to the value of the potential at the horizon.


2008 ◽  
Vol 17 (06) ◽  
pp. 911-920 ◽  
Author(s):  
ADIL BELHAJ ◽  
PABLO DIAZ ◽  
ANTONIO SEGUI ◽  
MOHAMED NACIRI

We propose a new potential in brane inflation theory, which is given by the arctangent of the square of the scalar field. Then we perform an explicit computation for inflationary quantities. This potential has many nice features. In the small field approximation, it reproduces the chaotic and MSSM potentials. It allows one, in the large field approximation, to implement the attractor mechanism for bulk black holes where the geometry on the brane is de Sitter. In particular, we show, up to some assumptions, that the Friedman equation can be reinterpreted as a Schwarzschild black hole attractor equation for its mass parameter.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yawar H Khan ◽  
Prince A Ganai ◽  
Sudhaker Upadhyay

Abstract We study the quantum-corrected thermodynamics of a class of black holes generated by self-gravitating Skyrmion models. One such black hole solution is the Einstein–Skrymion black hole. We first compute the Arnowitt–Deser–Misner mass of an Einstein–Skyrmion black hole using an on-shell Hamiltonian formalism already present in the literature. We then consider nonextended phase space thermodynamics and derive expressions for various thermodynamic quantities like the Hawking temperature, entropy, pressure, Gibbs free energy, and heat capacity. Next, we study the effect of quantum corrections on the thermodynamics of the Einstein–Skyrmion black hole. We observe that apart from leading to stability, the quantum correction induces an anti-de Sitter to de Sitter phase transition in the Einstein–Skrymion black hole. Treating the cosmological constant as the pressure, we determine the $P$–$V$ criticality of the Einstein–Skrymion black hole and observe that it depends on the model parameters $\lambda$ and $K$. This study of the $P$–$V$ criticality could help to estimate the experimental bound on the values of $\lambda$ and $K$.


Sign in / Sign up

Export Citation Format

Share Document