scholarly journals Exact energy spectrum of the generalized Dirac oscillator in an electric field

2018 ◽  
Vol 133 (7) ◽  
Author(s):  
H. P. Laba ◽  
V. M. Tkachuk
2019 ◽  
Vol 34 (30) ◽  
pp. 1950246
Author(s):  
Hassene Bada ◽  
Mekki Aouachria

In this paper, the propagator of a two-dimensional Dirac oscillator in the presence of a uniform electric field is derived by using the path integral technique. The fact that the globally named approach is used in this work redirects, beforehand, our search for the propagator of the Dirac equation to that of the propagator of its quadratic form. The internal motions relative to the spin are represented by two fermionic oscillators, which are described by Grassmannian variables, according to Schwinger’s fermionic model. Once the integration over the anticommuting variables (Grassmannian variables) is accomplished, the problem becomes the one of finding a non-relativistic propagator with only bosonic variables. The energy spectrum of the electron and the corresponding eigenspinors are also obtained in this work.


Author(s):  
Abdullah Guvendi ◽  
Hassan Hassanabadi

In this paper, we investigate the relativistic dynamics of a fermion–antifermion pair holding through Dirac oscillator interaction in the rotating frame of [Formula: see text]-dimensional topological defect-generated geometric background. We obtain an exact energy spectrum for the system in question by solving the corresponding form of a fully covariant two-body Dirac equation. This energy spectrum depends on the angular velocity [Formula: see text] of uniformly rotating frame and angular deficit [Formula: see text] in the geometric background. Our results show that the effects of [Formula: see text] on each energy level of the system are not same and the [Formula: see text] impacts on the strength of interaction between the particles. Furthermore, we observe that it seems to be possible to actively tune the dynamics of such a fermion–antifermion system, in principle.


2018 ◽  
Vol 33 (34) ◽  
pp. 1850202 ◽  
Author(s):  
N. Messai ◽  
B. Hamil ◽  
A. Hafdallah

In this paper, we study the (1 + 1)-dimensional Dirac equation in the presence of electric field and scalar linear potentials on (anti)-de Sitter background. Using the position representation, the energy spectrum and the corresponding wave functions are exactly obtained.


2009 ◽  
Vol 07 (supp01) ◽  
pp. 149-154
Author(s):  
MARIA ANASTASIA JIVULESCU ◽  
ROSANNA MIGLIORE ◽  
ANTONINO MESSINA

In this paper we investigate the possibility of controlling dynamical localization conditions for a charged particle confined in a 1D lattice biased with a dc-bichromatic field and long-range intersite interactions. We derive the quasi-energy spectrum of the system proving that the tunneling dynamics of the particle can be destroyed provided that the parameters of the external irradiating electric field are properly chosen.


1986 ◽  
Vol 34 (5) ◽  
pp. 1900-1905
Author(s):  
P. N. Brusov ◽  
E. D. Gutlyanskii ◽  
V. N. Popov

RSC Advances ◽  
2014 ◽  
Vol 4 (61) ◽  
pp. 32117-32126 ◽  
Author(s):  
Cheng-Peng Chang

An analytical approach is developed to access the exact energy spectrum, wave functions, dipole matrix element (Mfi) and absorption spectra (A(ω)) of gated Bernal bilayer graphene.


2019 ◽  
Vol 34 (36) ◽  
pp. 1950300 ◽  
Author(s):  
M. M. Stetsko

[Formula: see text]-dimensional Dirac oscillator with minimal uncertainty in position and maximal in momentum is investigated. To obtain energy spectrum, SUSY QM technique is applied. It is shown that the Dirac oscillator has two branches of spectrum, the first one gives the standard spectrum of the Dirac oscillator when the parameter of deformation goes to zero and the second branch does not have nondeformed limit. Maximal momentum brings an upper bound for the energy and it gives rise to the conclusion that the energy spectrum contains a finite number of eigenvalues. We also calculate partition function for the spectrum of the first type. The partition function allows us to derive thermodynamic functions of the oscillator which are obtained numerically.


Sign in / Sign up

Export Citation Format

Share Document