scholarly journals Polarization-dependent resonant phenomena in all-dielectric scatterers: inversion of magnetic inductance and electric displacement

2020 ◽  
Vol 135 (9) ◽  
Author(s):  
Aleksandr Shvartsburg ◽  
Sergey Artekha
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

The Lagrangian in eq. (2.1) of JHEP11 (2020) 005 has an erroneous factor of 1/2. The analysis code used for the results reported in the paper does not have this factor. The results remain unchanged.


2014 ◽  
Vol 1015 ◽  
pp. 97-100
Author(s):  
Yao Dai ◽  
Xiao Chong ◽  
Ying Chen

The higher order crack-tip fields for an anti-plane crack situated in the interface between functionally graded piezoelectric materials (FGPMs) and homogeneous piezoelectric materials (HPMs) are presented. The mechanical and electrical properties of the FGPMs are assumed to be linear functions of y perpendicular to the crack. The crack surfaces are supposed to be insulated electrically. By using the method of eigen-expansion, the higher order stress and electric displacement crack tip fields for FGPMs and HPMs are obtained. The analytic expressions of the stress intensity factors and the electric displacement intensity factors are derived.


2006 ◽  
Vol 03 (01) ◽  
pp. 115-135 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
JIAN-JUN ZHU ◽  
K. Y. SZE

An ad hoc one-dimensional finite element formulation is developed for the eigenanalysis of inplane singular electroelastic fields at material and geometric discontinuities in piezoelectric elastic materials by using the eigenfunction expansion procedure and the weak form of the governing equations for prismatic sectorial domains composed of piezoelectrics, composites or air. The order of the electroelastic singularities and the angular variation of the stress and electric displacement fields are obtained with the formulation. The influence of wedge angle, polarization orientation, material types, and boundary and interface conditions on the singular electroelastic fields and the order of their singularity are also examined. The simplicity and accuracy of the formulation are demonstrated by comparison to several analytical solutions for piezoelectric and composite multi-material wedges. The nature and speed of convergence suggests that the present eigensolution could be used in developing hybrid elements for use along with standard elements to yield accurate and computationally efficient solutions to problems having complex global geometries leading to singular electroelastic states.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
G. E. Tupholme

Representations in a closed form are derived, using an extension to the method of dislocation layers, for the phonon and phason stress and electric displacement components in the deformation of one-dimensional piezoelectric quasicrystals by a nonuniformly loaded stack of parallel antiplane shear cracks. Their dependence upon the polar angle in the region close to the tip of a crack is deduced, and the field intensity factors then follow. These exhibit that the phenomenon of crack shielding is dependent upon the relative spacing of the cracks. The analogous analyses, that have not been given previously, involving non-piezoelectric or non-quasicrystalline or simply elastic materials can be straightforwardly considered as special cases. Even when the loading is uniform and the crack is embedded in a purely elastic isotropic solid, no explicit representations have been available before for the components of the field at points other than directly ahead of a crack. Typical numerical results are graphically displayed.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3743
Author(s):  
Rui Li ◽  
Fangyuan Shi ◽  
Xu Cai ◽  
Haibo Xu

Photovoltaic (PV) power generation has shown a trend towards large-scale medium- or high-voltage integration in recent years. The development of high-frequency link PV systems is necessary for the further improvement of system efficiency and the reduction of system cost. In the system, high-frequency high-step-up ratio LLC converters are one of the most important parts. However, the parasitic parameters of devices lead to a loss of zero-voltage switching (ZVS) in the LLC converter, greatly reducing the efficiency of the system, especially in such a high-frequency application. In this paper, a high-frequency link 35 kV PV system is presented. To suppress the influences of parasitic parameters in the LLC converter in the 35 kV PV system, the influence of parasitic parameters on ZVS is analyzed and expounded. Then, a suppression method is proposed to promote the realization of ZVS. This method adds a saturable inductor on the secondary side to achieve ZVS. The saturable inductor can effectively prevent the parasitic elements of the secondary side from participating in the resonance of the primary side. The experimental results show that this method achieves a higher efficiency than the traditional method by reducing the magnetic inductance.


1976 ◽  
Vol 16 (1) ◽  
pp. 47-55 ◽  
Author(s):  
V. Atanassov ◽  
I. Zhelyazkov ◽  
A. Shivarova ◽  
Zh. Genchev

In this paper we propose an exact solution of Vlasov and Maxwell's equations for a bounded hot plasma in order to derive the dispersion relation of the axially-symmetric surface waves propagating along a plasma column. Assuming specular reflexion of plasma particles from the boundary, expressions for the components of the electric displacement vector are obtained on the basis of the Vlasov equation. Their substitution in Maxwell's equations, neglecting the spatial dispersion in the transverse plasma dielectric function, allows us to determine the plasma impedance. The equating of plasma and dielectric impedances gives the wave dispersion relation which, in different limiting cases, coincides with the well-known results.


Author(s):  
Y Su ◽  
G.J Weng

Most key elements of ferroelectric properties are defined through the hysteresis loops. For a ferroelectric ceramic, its loop is contributed collectively by its constituent grains, each having its own hysteresis loop when the ceramic polycrystal is under a cyclic electric field. In this paper, we propose a polycrystal hysteresis model so that the hysteresis loop of a ceramic can be calculated from the loops of its constituent grains. In this model a micromechanics-based thermodynamic approach is developed to determine the hysteresis behaviour of the constituent grains, and a self-consistent scheme is introduced to translate these behaviours to the polycrystal level. This theory differs from the classical phenomenological ones in that it is a micromechanics-based thermodynamic approach and it can provide the evolution of new domain concentration among the constituent grains. It also differs from some recent micromechanics studies in its secant form of self-consistent formulation and in its application of irreversible thermodynamics to derive the kinetic equation of domain growth. To put this two-level micromechanics theory in perspective, it is applied to a ceramic PLZT 8/65/35, to calculate its hysteresis loop between the electric displacement and the electric field ( D versus E ), and the butterfly-shaped longitudinal strain versus the electric field relation ( ϵ versus E ). The calculated results are found to be in good quantitative agreement with the test data. The corresponding evolution of new domain concentration c 1 and the individual hysteresis loops of several selected grains—along with those of the overall polycrystal—are also illustrated.


Sign in / Sign up

Export Citation Format

Share Document