scholarly journals A computational modeling on transient heat and fluid flow through a curved duct of large aspect ratio with centrifugal instability

2021 ◽  
Vol 136 (4) ◽  
Author(s):  
Shamsun Naher Dolon ◽  
Mohammad Sanjeed Hasan ◽  
Giulio Lorenzini ◽  
Rabindra Nath Mondal

AbstractDue to remarkable applications of the curved ducts in engineering fields, scientists have paid much attention to invent new characteristics of curved-duct flow in mechanical systems. In the ongoing study, a computational modeling of fluid flow and energy distribution through a curved rectangular duct of large aspect ratio is presented. Governing equations are enumerated by using a spectral-based numerical technique together with the function expansion and collocation method. The main purpose of the paper is to analyze the effect of centrifugal force in the flow transition as well as heat transfer in the fluid. The investigations are performed for the aspect ratio, Ar = 4; the curvature ratio, $$\delta = 0.5$$ δ = 0.5 ; the Grashof number, $${\text{Gr}} = 1000$$ Gr = 1000 ; and varying the Dean number, $$0 < {\text{Dn}} \le 1000.$$ 0 < Dn ≤ 1000 . It is found that various types of flow regimes including steady-state and irregular oscillations occur as Dn is increased. To well understand the characteristics of the flow phase spaces and power spectrum of the solutions are performed. Next, pattern variations of axial and secondary flow velocity with isotherms are illustrated for different Dn’s. It is revealed that the flow velocity and the isotherms are significantly influenced by the duct curvature and the aspect ratio. Convective heat transfer and temperature gradients are calculated which explores that the fluids are diversified due to centrifugal instability, and as a consequence the overall heat transfer is enhanced significantly in the curved duct.

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Basanta Kumar Rana ◽  
Bhajneet Singh ◽  
Jnana Ranjan Senapati

Abstract Numerical investigations are performed on natural and mixed convection around stationary and rotating vertical heated hollow cylinder with negligible wall thickness suspended in the air. The fluid flow and heat transfer characterization around the hollow cylinder are obtained by varying the following parameters, namely, Rayleigh number (Ra), Reynolds number (ReD), and cylindrical aspect ratio (L/D). The heat transfer quantities are estimated by varying the Rayleigh number (Ra) from 104 to 108 and aspect ratio (L/D) ranging from 1 to 20. Steady mixed convection with active rotation of hollow vertical cylinder is further studied by varying the Reynolds number (ReD) from 0 to 2100. The velocity vectors and temperature contours are shown in order to understand the fluid flow and heat transfer around the vertical hollow cylinder for both rotating and nonrotating cases. The surface average Nusselt number trends are presented for various instances of Ra, ReD, and L/D and found out that the higher rate of heat loss from the cylinder wall occurs at high Ra, low L/D (short cylinder) and high ReD.


Author(s):  
Rui Kan ◽  
Li Yang ◽  
Jing Ren ◽  
Hongde Jiang

Thermal issues of gas turbine blade trailing edge are complex and challenging, due to limited space for effective cooling. The trailing edge cavities are usually large aspect ratio ducts with lateral ejection. The objective of this study is to investigate the effects of different rib configurations and lateral ejection on heat transfer characteristics inside a trailing edge channel. The investigations were conducted on a large aspect ratio wedge-shaped channel with square ribs of e/Dh = 0.05, under Reynolds number 15,000. Twelve different configurations were tested: 1)three rib types, including a symmetry V-shaped rib configuration and two non-symmetry V-shaped rib configurations, of which the rib angles are 60 degrees, 2) two rib pitches, P/e = 10 and P/e = 5, 3) two flow directions, with an open tip outlet or with lateral ejection. Spatially resolved heat transfer distributions were obtained using the transient thermochromic liquid crystal experimental method. The configurations were also investigated numerically for the detailed flow field and for the validation of CFD codes. Results show that with lateral ejection, the heat transfer coefficients decrease from inlet to outlet. The heat transfer near the ejection holes is enhanced while heat transfer coefficients near the wall opposite to the exit holes decrease. The curvature of the streamlines creates a large separation area near the end of the channel and thus results in low local heat transfer coefficients. The P/e = 10 configurations have higher average heat transfer compared with P/e = 5 configurations. Average heat transfer coefficient is the highest with the center of the V-shaped rib placed at the middle of the channel, and is the lowest when the V-shaped rib center is located near the narrow part of the channel.


2015 ◽  
Vol 771 ◽  
pp. 57-78 ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang ◽  
Innocent Mutabazi

We have performed numerical simulations of the flow in a large-aspect-ratio Couette–Taylor system with rotating inner cylinder and with a radial temperature gradient. The aspect ratio was chosen in such a way that the base state is in the conduction regime. Away from the endplates, the base flow is a superposition of an azimuthal flow induced by rotation and an axial flow (large convective cell) induced by the temperature gradient. For a fixed rotation rate of the inner cylinder in the subcritical laminar regime, the increase of the temperature difference imposed on the annulus destabilizes the convective cell to give rise to co-rotating vortices as primary instability modes and to counter-rotating vortices as secondary instability modes. The space–time properties of these vortices have been computed, together with the momentum and heat transfer coefficients. The temperature gradient enhances the momentum and heat transfer in the flow independently of its sign.


2013 ◽  
Vol 56 ◽  
pp. 141-148 ◽  
Author(s):  
Rabindra Nath Mondal ◽  
Md. Saidul Islam ◽  
Md. Kutub Uddin

Author(s):  
Satish Kumar ◽  
Jayathi Y. Murthy

Periodic arrays of particles, foams, and other structures impregnated with a static fluid play an important role in heat transfer enhancement. In this paper, we develop a numerical method for computing conduction heat transfer in periodic beds by exploiting the periodicity of heat flux and the resulting linear variation of mean temperature. The numerical technique is developed within the framework of an unstructured finite volume scheme in order to enable the computation of effective thermal conductivity for complex fluid-particle arrangements. The method is applied to the computation of effective thermal conductivity of ordered as well as random beds of spheres and rods. The effect of varying surface area, aspect ratio, volume fraction, orientation, and distribution is studied for various solid-to-fluid conductivity ratios. Unlike classical theories which predict only a dependence on volume fraction, these direct simulations show that aspect ratio, distribution, and alignment of particles have an important influence on the effective thermal conductivity of the bed.


2013 ◽  
Vol 17 (3) ◽  
pp. 853-864 ◽  
Author(s):  
Abdennacer Ahmanache ◽  
Noureddine Zeraibi

Numerical study of natural convection heat transfer and fluid flow in cylindrical cavity with hot walls and cold sink is conducted. Calculations are performed in terms of the cavity aspect ratio, the heat exchanger length and the thermo physical properties expressed via the Prandtl number and the Rayleigh number. Results are presented in the form of isotherms, streamlines, average Nusselt number and average bulk temperature for a range of Rayleigh number up to 106. It is observed that Rayleigh number and heat exchanger length influences fluid flow and heat transfer, whereas the cavity aspect ratio has no significant effects.


2021 ◽  
Vol 26 (4) ◽  
pp. 29-50
Author(s):  
Mohammad Sanjeed Hasan ◽  
Md. Tusher Mollah ◽  
Dipankar Kumar ◽  
Rabindra Nath Mondal ◽  
Giulio Lorenzini

Abstract The fluid flow and heat transfer through a rotating curved duct has received much attention in recent years because of vast applications in mechanical devices. It is noticed that there occur two different types of rotations in a rotating curved duct such as positive and negative rotation. The positive rotation through the curved duct is widely investigated while the investigation on the negative rotation is rarely available. The paper investigates the influence of negative rotation for a wide range of Taylor number (−10 ≤ Tr ≤ −2500) when the duct itself rotates about the center of curvature. Due to the rotation, three types of forces including Coriolis, centrifugal, and buoyancy forces are generated. The study focuses and explains the combined effect of these forces on the fluid flow in details. First, the linear stability of the steady solution is performed. An unsteady solution is then obtained by time-evolution calculation and flow transition is determined by calculating phase space and power spectrum. When Tr is raised in the negative direction, the flow behavior shows different flow instabilities including steady-state, periodic, multi-periodic, and chaotic oscillations. Furthermore, the pattern variations of axial and secondary flow velocity and isotherms are obtained, and it is found that there is a strong interaction between the flow velocities and the isotherms. Then temperature gradients are calculated which show that the fluid mixing and the acts of secondary flow have a strong influence on heat transfer in the fluid. Diagrams of unsteady flow and vortex structure are further sketched and precisely elucidate the curvature effects on unsteady fluid flow. Finally, a comparison between the numerical and experimental data is discussed which demonstrates that both data coincide with each other.


Author(s):  
Qi Min ◽  
Li Zhang ◽  
Hongtao Wang ◽  
Junpeng Zhai

A special-shaped water tank with large aspect ratio and limited volume for cooling was investigated using computational fluid dynamics. The influence of a separator on the heat transfer ability in the water tank is analyzed. When there is no separator, the arrangement of cooling pipes is very important to the heat transfer and temperature field in the water tank. The total heat flux of the pipe bundle and the temperature field will become bad if the pipe bundle is arranged not uniform in the water tank. Adding a separator can greatly enhance the integral natural convection of cold and hot water in the water tank and a uniform temperature field and regular velocity field could be got. The heat transfer ability for the structure with a separator is better than the structure without a separator, and is not sensible to the arrangement of the pipe bundle. The heat transfer ability also did not change when the position of separator and pipe bundle exchanged, and is not a strong function of the distance between separator and the pipe bundle or the wall of the water tank. Finally, the inclination of the water tank is discussed.


Sign in / Sign up

Export Citation Format

Share Document