scholarly journals A minimal supersymmetric left-right model, dark matter and signals at the LHC

2020 ◽  
Vol 229 (21) ◽  
pp. 3187-3203
Author(s):  
Katri Huitu

AbstractThe left-right symmetric models extend the gauge group of the Standard Model enabling treatment of the left- and right-handed fermions in the same footing. The left-right symmetry requires the existence of right-handed neutrinos, leading naturally to non-zero masses for neutrinos. Here some aspects of a supersymmetric version of the left-right symmetric models are reviewed. Such models have many virtues, including possibility for dark matter without any new additional symmetry needed in order to have a stable lightest supersymmetric particle. In the model the lightest sneutrino or the lightest neutralino can form dark matter of the universe, at the same time fulfilling all the experimental constraints. The dark matter particle in the model can be very different from the dark matter typical in the minimal supersymmetric standard model. Specific signals for this kind of models at the LHC are also discussed.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Shing Yan Li ◽  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract Guided by the naturalness criterion for an exponentially small cosmological constant, we present a string theory motivated 4-dimensional $$ \mathcal{N} $$ N = 1 non-linear supergravity model (or its linear version with a nilpotent superfield) with spontaneous supersymmetry breaking. The model encompasses the minimal supersymmetric standard model, the racetrack Kähler uplift, and the KKLT anti-D3-branes, and use the nilpotent superfield to project out the undesirable interaction terms as well as the unwanted degrees of freedom to end up with the standard model (not the supersymmetric version) of strong and electroweak interactions.


2015 ◽  
Vol 24 (07) ◽  
pp. 1530019 ◽  
Author(s):  
Mathias Garny ◽  
Alejandro Ibarra ◽  
Stefan Vogl

Three main strategies are being pursued to search for nongravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early universe via thermal freeze-out.


2012 ◽  
Vol 27 (21) ◽  
pp. 1250117 ◽  
Author(s):  
FAYYAZUDDIN

A model for electroweak unification of quarks and leptons, in a gauge group SUC(3) × SU(4) × UX(1) is constructed. The model requires, three generations of quarks and leptons which are replicas (mirror) of the standard quarks and leptons. The gauge group SU(4) × UX(1) is broken in such a way so as to reproduce standard model and to generate heavy masses for the vector bosons [Formula: see text], the leptoquarks and mirror fermions. It is shown lower limit on mass scale of mirror fermions is [Formula: see text], E- being the lightest mirror fermion coupled to Z boson. As the universe expands, the heavy matter is decoupled at an early stage of expansion and may be a source of dark matter. Leptoquarks in the model connect the standard model and mirror fermions. Baryon genesis in our universe implies antibaryon genesis in mirror universe.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.


LEP data constrain severely many proposed extensions of the Standard Model. These include: massive neutrinos, which are now largely excluded as candidates for the dark matter of the Universe; supersymmetric particles, the lightest of which would still constitute detectable dark matter; technicolour, of which many favoured versions are now excluded by precision electroweak measurements; and grand unified theories, of which LEP data favour supersymmetric versions.


2008 ◽  
Vol 23 (10) ◽  
pp. 721-725 ◽  
Author(s):  
ERNEST MA

Adding a second scalar doublet (η+, η0) and three neutral singlet fermions N1, 2, 3 to the Standard Model of particle interactions with a new Z2 symmetry, it has been shown that [Formula: see text] or [Formula: see text] is a good dark-matter candidate and seesaw neutrino masses are generated radiatively. A supersymmetric U(1) gauge extension of this new idea is proposed, which enforces the usual R-parity of the Minimal Supersymmetric Standard Model, and allows this new Z2 symmetry to emerge as a discrete remnant.


2004 ◽  
Vol 19 (12) ◽  
pp. 1863-1892 ◽  
Author(s):  
OTTO C. W. KONG

The generic supersymmetric version of the Standard Model would have the minimal list of superfields incorporating the Standard Model particles, and a Lagrangian dictated by the Standard Model gauge symmetries. To be phenomenologically viable, soft supersymmetry breaking terms have to be included. In the most popular version of the supersymmetric Standard Model, an ad hoc discrete symmetry, called R parity, is added in by hand. While there has been a lot of various kinds of R-parity violation studies in the literature, the complete version of supersymmetry without R parity is not popularly appreciated. In this article, we present a pedagogical review of the formulation of this generic supersymmetric Standard Model and give a detailed discussion on the basic conceptual issues involved. Unfortunately, there are quite some confusing, or even plainly wrong, statements on the issues within the literature of R-parity violations. We aim at clarifying these issues here. We will first discuss our formulation, about which readers are urged to read without bias from previous acquired perspectives on the topic. Based on the formulation, we will then address the various issues. In relation to phenomenology, our review here will not go beyond tree-level mass matrices. But we will give a careful discussion of mass matrices of all the matter fields involved. Useful expressions for perturbative diagonalizations of the mass matrices at the phenomenologically interesting limit of corresponds to small neutrino masses are derived. All these expressions are given in the fully generic setting, with information on complex phases of parameters retained. Such expressions have been shown to be useful in the analyses of various phenomenological features.


2018 ◽  
Vol 33 (02) ◽  
pp. 1830003 ◽  
Author(s):  
John Ellis

The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.


2000 ◽  
Vol 15 (19) ◽  
pp. 1221-1225 ◽  
Author(s):  
G. B. TUPPER ◽  
R. J. LINDEBAUM ◽  
R. D. VIOLLIER

We examine the phenomenology of a low-energy extension of the Standard Model, based on the gauge group SU (3) ⊗ SU (2) ⊗ U (1)⊗ SO (3), with SO(3) operating in the shadow sector. This model offers vacuum νe → νs and νμ → ντ oscillations as the solution of the solar and atmospheric neutrino problems, and it provides a neutral heavy shadow lepton X that takes the role of a cold dark matter particle.


Sign in / Sign up

Export Citation Format

Share Document