Magnetic Hysteresis Models for Field-Temperature Variations

2022 ◽  
pp. 56-61
1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


Author(s):  
D. M. Davies ◽  
R. Kemner ◽  
E. F. Fullam

All serious electron microscopists at one time or another have been concerned with the cleanliness and freedom from artifacts of thin film specimen support substrates. This is particularly important where there are relatively few particles of a sample to be found for study, as in the case of micrometeorite collections. For the deposition of such celestial garbage through the use of balloons, rockets, and aircraft, the thin film substrates must have not only all the attributes necessary for use in the electron microscope, but also be able to withstand rather wide temperature variations at high altitude, vibration and shock inherent in the collection vehicle's operation and occasionally an unscheduled violent landing.Nitrocellulose has been selected as a film forming material that meets these requirements yet lends itself to a relatively simple clean-up procedure to remove particulate contaminants. A 1% nitrocellulose solution is prepared by dissolving “Parlodion” in redistilled amyl acetate from which all moisture has been removed.


Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


2017 ◽  
Vol 51 (4) ◽  
pp. e9-e14 ◽  
Author(s):  
Hiroto Kajita ◽  
Atsuko Yamazaki ◽  
Takaaki Watanabe ◽  
Chung-Che Wu ◽  
Chuan-Chou Shen ◽  
...  

2015 ◽  
Vol 7 (1) ◽  
pp. 1346-1351
Author(s):  
Ch.Gopal Reddy ◽  
Ch. Venkateshwarlu ◽  
P. Vijaya Bhasker Reddy

Co-Zr substituted M-type hexagonal barium ferrites, with chemical formula BaCoxZrxFe12-2xO19 (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), have been synthesized by double sintering ceramic method. The crystallographic properties, grain morphology and magnetic properties of these ferrites have been investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The XRD patterns confirm the single phase with hexagonal structure of prepared ferrites. The magnetic properties have been investigated as a function of Co and Zr ion composition at an applied field in the range of 20 KOe. These studies indicate that the saturation magnetization (Ms) in the samples increases initially up to the Co-Zr composition of x=0.6 and decreases thereafter. On the other hand, the coercivity (Hc) and Remanent magnetization (Mr) are found to decrease continuously with increasing Co-Zr content. This property is most useful in permanent magnetic recording. The observed results are explained on the basis of site occupation of Co and Zr ions in the samples.


Sign in / Sign up

Export Citation Format

Share Document