The Role of Photoactive Materials Based on Tetrapyrrolic Macrocycles in Antimicrobial Photodynamic Therapy

2022 ◽  
pp. 201-277
Author(s):  
Mariana Q. Mesquita ◽  
Cristina J. Dias ◽  
Maria G. P. M. S. Neves ◽  
Adelaide Almeida ◽  
M. Amparo F. Faustino
2016 ◽  
Vol 13 ◽  
pp. 139-147 ◽  
Author(s):  
Fahim Vohra ◽  
Zohaib Akram ◽  
Syarida Hasnur Safii ◽  
Rathna Devi Vaithilingam ◽  
Alexis Ghanem ◽  
...  

Author(s):  
Pier Poli ◽  
Francisley Avila Souza ◽  
Mattia Manfredini ◽  
Carlo Maiorana ◽  
Mario Beretta

Not required for Clinical case letters according to the authors' guidelines.


2020 ◽  
Vol 27 (40) ◽  
pp. 6815-6824 ◽  
Author(s):  
Yuan Jiang ◽  
Chuanshan Xu ◽  
Wingnang Leung ◽  
Mei Lin ◽  
Xiaowen Cai ◽  
...  

Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 869
Author(s):  
Beatriz Müller Nunes Souza ◽  
Juliana Guerra Pinto ◽  
André Henrique Correia Pereira ◽  
Alejandro Guillermo Miñán ◽  
Juliana Ferreira-Strixino

Staphylococccus aureus is a ubiquitous and opportunistic bacteria associated with high mortality rates. Antimicrobial photodynamic therapy (aPDT) is based on the application of a light source and a photosensitizer that can interact with molecular oxygen, forming Reactive Oxygen Species (ROS) that result in bacterial inactivation. This study aimed to analyze, in vitro, the action of aPDT with Photodithazine® (PDZ) in methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains. The strains were incubated with PDZ at 25, 50, 75, and 100 mg/L for 15 min and irradiated with fluences of 25, 50, and 100 J/cm2. The internalization of PDZ was evaluated by confocal microscopy, the bacterial growth by counting the number of colony-forming units, as well as the bacterial metabolic activity post-aPDT and the production of ROS. In both strains, the photosensitizer was internalized; the production of ROS increased when the aPDT was applied; there was a bacterial reduction compared to the control at all the evaluated fluences and concentrations; and, in most parameters, it was obtained complete inactivation with significant difference (p < 0.05). The implementation of aPDT with PDZ in clinical strains of S. aureus has resulted in its complete inactivation, including the MRSA strains.


Sign in / Sign up

Export Citation Format

Share Document