ON THE QUANTIZATION OF THE ELECTROMAGNETIC FIELD IN ACCELERATED FRAMES: AN ANALYSIS OF THE UNRUH EFFECT

2002 ◽  
pp. 1365-1372
Author(s):  
D. COLOSI
Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 844
Author(s):  
Ben Maybee ◽  
Daniel Hodgson ◽  
Almut Beige ◽  
Robert Purdy

Recently, Bennett et al. (Eur. J. Phys. 37:014001, 2016) presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes. Working within the standard assumptions of quantum field theory and only postulating the physicality of the photon, we derive the Hamiltonian, H ^ , and the electric and magnetic field observables, E ^ and B ^ , respectively, without having to invoke a specific gauge. As an example, we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843008 ◽  
Author(s):  
Gabriel Cozzella ◽  
André G. S. Landulfo ◽  
George E. A. Matsas ◽  
Daniel A. T. Vanzella

The Unruh effect is essential to keep the consistency of quantum field theory in inertial and uniformly accelerated frames. Thus, the Unruh effect must be considered as well-tested as quantum field theory itself. In spite of it, it would be nice to realize an experiment whose output could be directly interpreted in terms of the Unruh effect. This is not easy because the linear acceleration needed to reach a temperature of 1[Formula: see text]K is of order [Formula: see text]. We discuss here a conceptually simple experiment reachable under present technology, which may accomplish this goal. The inspiration for this proposal can be traced back to Atsushi Higuchi’s Ph.D. thesis, which makes it particularly suitable to pay tribute to him on occasion of his [Formula: see text]th anniversary.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Charles Wang ◽  
Melania Mieczkowska

Zero-point fluctuations are a universal consequence of quantum theory. Vacuum fluctuations of electromagnetic field have provided crucial evidence and guidance for QED as a successful quantum field theory with a defining gauge symmetry through the Lamb shift, Casimir effect, and spontaneous emission. In an accelerated frame, the thermalisation of the zero-point electromagnetic field gives rise to the Unruh effect linked to the Hawking effect of a black hole via the equivalence principle. This principle is the basis of general covariance, the symmetry of general relativity as the classical theory of gravity. If quantum gravity exists, the quantum vacuum fluctuations of the gravitational field should also lead to the quantum decoherence and dissertation of general forms of energy and matter. Here we present a novel theoretical effect involving the spontaneous emission of soft gravitons by photons as they bend around a heavy mass and discuss its observational prospects. Our analytic and numerical investigations suggest that the gravitational bending of starlight predicted by classical general relativity should also be accompanied by the emission of gravitational waves. This in turn redshifts the light causing a loss of its energy somewhat analogous to the bremsstrahlung of electrons by a heavier charged particle. It is suggested that this new effect may be important for a combined astronomical source of intense gravity and high-frequency radiation such as X-ray binaries and that the proposed LISA mission may be potentially sensitive to the resulting sub-Hz stochastic gravitational waves.


2004 ◽  
Vol 70 (8) ◽  
Author(s):  
Jan Ivar Korsbakken ◽  
Jon Magne Leinaas

2016 ◽  
Vol 31 (34) ◽  
pp. 1650189 ◽  
Author(s):  
Wenting Zhou

We study, from the viewpoint of a co-accelerated observer, the average rate of change of atomic energy for an atom in uniform acceleration and coupled to quantum electromagnetic field at a thermal state with an arbitrary temperature T. We show that only when the temperature of the thermal state in the co-accelerated frame is assumed to be the Fulling–Davies–Unruh (FDU) temperature, T = a/2[Formula: see text], can the average rate of change of atomic energy in a local inertial frame be recovered, which exemplifies the equivalence between the Minkowski vacuum and a thermal bath of Rindler particles. This conclusion is verified to be valid not only in a free spacetime, but also in a spacetime with a boundary.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250013 ◽  
Author(s):  
S. Khan ◽  
M. K. Khan

We study the effects of decoherence on the entanglement generated by Unruh effect in accelerated frames by using various combinations of an amplitude damping channel, a phase damping channel and a depolarizing channel in the form of multilocal and collective environments. Using concurrence as entanglement quantifier, we show that the occurrence of entanglement sudden death (ESD) depends on different combinations of the channels. The ESD can be avoided under a particular configuration of the channels. We show that the channels can be used to distinguish between a moving and a stationary frame.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 735 ◽  
Author(s):  
Roberto Passante

Dispersion interactions are long-range interactions between neutral ground-state atoms or molecules, or polarizable bodies in general, due to their common interaction with the quantum electromagnetic field. They arise from the exchange of virtual photons between the atoms, and, in the case of three or more atoms, are not additive. In this review, after having introduced the relevant coupling schemes and effective Hamiltonians, as well as properties of the vacuum fluctuations, we outline the main properties of dispersion interactions, both in the nonretarded (van der Waals) and retarded (Casimir–Polder) regime. We then discuss their deep relation with the existence of the vacuum fluctuations of the electromagnetic field and vacuum energy. We describe some transparent physical models of two- and three-body dispersion interactions, based on dressed vacuum field energy densities and spatial field correlations, which stress their deep connection with vacuum fluctuations and vacuum energy. These models give a clear insight of the physical origin of dispersion interactions, and also provide useful computational tools for their evaluation. We show that this aspect is particularly relevant in more complicated situations, for example when macroscopic boundaries are present. We also review recent results on dispersion interactions for atoms moving with noninertial motions and the strict relation with the Unruh effect, and on resonance interactions between entangled identical atoms in uniformly accelerated motion.


Sign in / Sign up

Export Citation Format

Share Document