Analysis of the Electromagnetic Field Quantization Process and the Photon Vector Potential. Non-Local Photon Wave-Particle Representation and the Quantum Vacuum

2017 ◽  
pp. 99-129
Author(s):  
Constantin Meis

We present theoretical developments expressing the physical characteristics of a single photon in conformity with the experimental evidence. The quantization of the electromagnetic field vector potential amplitude is enhanced to a free of cavity photon state. Coupling the Schrödinger equation with the relativistic massless particle Hamiltonian to a symmetrical vector potential relation, we establish the vector potential - energy equation for the photon expressing the simultaneous wave-particle nature of a single photon, an intrinsic physical property. It is shown that the vector potential can be naturally considered as a real wave function for the photon entailing a coherent localization probability. We deduce directly the electric and magnetic field amplitudes of the cavity-free single photon, which are revealed to be proportional to the square of the angular frequency. The zero-energy electromagnetic field ground state (EFGS), a quantum vacuum real component, issues naturally from Maxwell’s equations and the vector potential quantization procedure. The relation of the quantized amplitude of the photon vector potential to the electron-positron charge results directly showing the physical relationship between photons and electrons-positrons that might be at the origin of their mutual transformations. It becomes obvious that photons, as well as electrons-positrons, are issued from the same quantum vacuum field.


Author(s):  
N. N. Konobeeva ◽  
M. B. Belonenko

In this paper, we investigate the evolution of electromagnetic waves in a nonlinear anisotropic optical medium with carbon nanotubes (CNTs). Based on Maxwell’s equation, an effective equation is obtained for the vector potential of the electromagnetic field, which takes into account different values of the velocity and polarization with two directions. The dependence of the pulse shape on the crystal type, as well as the angle between the electric field and the CNTs axis is revealed.


2019 ◽  
Vol 34 (26) ◽  
pp. 1950149
Author(s):  
Marzieh Hossein Zadeh ◽  
Majid Amooshahi

A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric cylindrical shell is provided. The mode expansions of the dynamical quantum fields, contained in the theory, is achieved and the ladder operators of the system are introduced. Using the Frobenius’s series technique, the Maxwell’s equations in the presence of the bi-anisotropic absorbing magneto-dielectric cylindrical shell are solved and the space–time dependence of the quantized electromagnetic field is obtained. Applying the conservation principle of the angular momentum, the net quantum vacuum torque exerted on the bi-anisotropic absorbing magneto-dielectric cylindrical shell is calculated. The net quantum vacuum torque exerted on the cylindrical shell is calculated in the vacuum state and the thermal state of the system. The quantum vacuum torque on the cylindrical shell identically vanishes when the bi-anisotropic absorbing magneto-dielectric cylindrical shell is converted to an isotropic one.


1997 ◽  
Vol 11 (12) ◽  
pp. 531-540
Author(s):  
V. Onoochin

An experiment within the framework of classical electrodynamics is proposed, to demonstrate Boyer's suggestion of a change in the velocity of a charged particle as it passes close to a solenoid. The moving charge is replaced by an ultra-short pulse (USP), whose characteristics should depend on the current in the coil. This dependence results from the exchange of energy between the electromagnetic field of the pulse and the magnetic field within the solenoid. This energy exchange could only be explained, by assuming that the vector potential of the solenoid has a direct influence on the pulse.


1963 ◽  
Vol 41 (12) ◽  
pp. 2241-2251 ◽  
Author(s):  
M. G. Calkin

The equations of motion of an inviscid, infinitely conducting fluid in an electromagnetic field are transformed into a form suitable for an action principle. An action principle from which these equations may be derived is found. The conservation laws follow from invariance properties of the action. The space–time invariances lead to the conservation of momentum, energy, angular momentum, and center of mass, while the gauge invariances lead to conservation of mass, a generalization of the Helmholtz vortex theorem of hydrodyanmics, and the conservation of the volume integrals of A∙B and v∙B, where A is the vector potential, B is the magnetic induction, and v is the fluid velocity.


2009 ◽  
Vol 59 (1) ◽  
pp. 1-80 ◽  
Author(s):  
Mark Hillery

An introduction to the quantum theory of nonlinear opticsThis article is provides an introduction to the quantum theory of optics in nonlinear dielectric media. We begin with a short summary of the classical theory of nonlinear optics, that is nonlinear optics done with classical fields. We then discuss the canonical formalism for fields and its quantization. This is applied to quantizing the electromagnetic field in free space. The definition of a nonclassical state of the electromagnetic field is presented, and several examples are examined. This is followed by a brief introduction to entanglement in the context of field modes. The next task is the quantization of the electromagnetic field in an inhomogeneous, linear dielectric medium. Before going on to field quantization in nonlinear media, we discuss a number of commonly employed phenomenological models for quantum nonlinear optical processes. We then quantize the field in both nondispersive and dispersive nonlinear media. Flaws in the most commonly used methods of accomplishing this task are pointed out and discussed. Once the quantization has been completed, it is used to study a multimode theory of parametric down conversion and the propagation of quantum solitons.


Sign in / Sign up

Export Citation Format

Share Document