Roll system vibration control of rolling mill based on time delay feedback

Author(s):  
Bin Liu ◽  
Jia-Hao Jiang ◽  
Kun Wang ◽  
Peng Li ◽  
Gui-Xiang Pan
2020 ◽  
Vol 117 (2) ◽  
pp. 210
Author(s):  
Dongping He ◽  
Huidong Xu ◽  
Tao Wang ◽  
Zhongkai Ren

This paper investigates vibration characteristics of the corrugated roll system and designs a time-delay feedback controller to control the parametrically excited vibration of system. The model of parametrically excited nonlinear vertical vibration of roller system is established by considering the nonlinear damping and nonlinear stiffness within corrugated interface of corrugated rolling mill. The approximate analytical solution and amplitude-frequency characteristic equations of principal resonance and sub-resonance of roller system are obtained by using the multiple-scale method. The influences of nonlinear stiffness coefficient, nonlinear damping coefficient, system damping coefficient and rolling force amplitude on vibration are further analyzed. The time-delay feedback controller is designed to eliminate the jump and hysteresis phenomenon of the roll system and numerical simulation results demonstrate the effectiveness of the controller. The analysis results provide some theoretical guidance for vibration suppression of roller system of corrugated rolling mill.


2018 ◽  
Vol 153 ◽  
pp. 06005
Author(s):  
Dongxiao Hou

In this paper, a two degree of freedom nonlinear vertical vibration equation of the cold rolling mill with the dynamic rolling force was established, then the delay feedback control method was introduced into the equation to controlled the vertical vibration of the system. The amplitude-frequency equations of primary resonance of system was carried out by using the multi-scale method, and the resonance characteristics of different parameters of delay feedback control method were obtained by adopting the actual parameters of rolling mill. It is found that the size of the resonance amplitude value was effectively controlled and the resonance region and jumping phenomenon of the system were eliminated by selecting the appropriate time-delay parameters combination, which provides an effective theoretical reference for solving mill vibration problems.


Sign in / Sign up

Export Citation Format

Share Document