Energy optimisation in cloud servers using a static threshold VM consolidation technique (STVMC)

Author(s):  
Bilal Ahmad ◽  
Sally McClean ◽  
Darryl Charles ◽  
Gerard Parr
Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


Author(s):  
Priya Mathur ◽  
Amit Kumar Gupta ◽  
Prateek Vashishtha

Cloud computing is an emerging technique by which anyone can access the applications as utilities over the internet. Cloud computing is the technology which comprises of all the characteristics of the technologies like distributed computing, grid computing, and ubiquitous computing. Cloud computing allows everyone to create, to configure as well as to customize the business applications online. Cryptography is the technique which is use to convert the plain text into cipher text using various encryption techniques. The art and science used to introduce the secrecy in the information security in order to secure the messages is defined as cryptography. In this paper we are going to review few latest Cryptographic algorithms which are used to enhance the security of the data on the cloud servers. We are comparing Short Range Natural Number Modified RSA (SRNN), Elliptic Curve Cryptography Algorithm, Client Side Encryption Technique and Hybrid Encryption Technique to secure the data in cloud.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 621
Author(s):  
Giuseppe Psaila ◽  
Paolo Fosci

Internet technology and mobile technology have enabled producing and diffusing massive data sets concerning almost every aspect of day-by-day life. Remarkable examples are social media and apps for volunteered information production, as well as Open Data portals on which public administrations publish authoritative and (often) geo-referenced data sets. In this context, JSON has become the most popular standard for representing and exchanging possibly geo-referenced data sets over the Internet.Analysts, wishing to manage, integrate and cross-analyze such data sets, need a framework that allows them to access possibly remote storage systems for JSON data sets, to retrieve and query data sets by means of a unique query language (independent of the specific storage technology), by exploiting possibly-remote computational resources (such as cloud servers), comfortably working on their PC in their office, more or less unaware of real location of resources. In this paper, we present the current state of the J-CO Framework, a platform-independent and analyst-oriented software framework to manipulate and cross-analyze possibly geo-tagged JSON data sets. The paper presents the general approach behind the J-CO Framework, by illustrating the query language by means of a simple, yet non-trivial, example of geographical cross-analysis. The paper also presents the novel features introduced by the re-engineered version of the execution engine and the most recent components, i.e., the storage service for large single JSON documents and the user interface that allows analysts to comfortably share data sets and computational resources with other analysts possibly working in different places of the Earth globe. Finally, the paper reports the results of an experimental campaign, which show that the execution engine actually performs in a more than satisfactory way, proving that our framework can be actually used by analysts to process JSON data sets.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


2020 ◽  
Vol 53 (5) ◽  
pp. 1-41 ◽  
Author(s):  
Weiwei Lin ◽  
Fang Shi ◽  
Wentai Wu ◽  
Keqin Li ◽  
Guangxin Wu ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1553
Author(s):  
Marian Rusek ◽  
Grzegorz Dwornicki

Introduction of virtualization containers and container orchestrators fundamentally changed the landscape of cloud application development. Containers provide an ideal way for practical implementation of microservice-based architecture, which allows for repeatable, generic patterns that make the development of reliable, distributed applications more approachable and efficient. Orchestrators allow for shifting the accidental complexity from inside of an application into the automated cloud infrastructure. Existing container orchestrators are centralized systems that schedule containers to the cloud servers only at their startup. In this paper, we propose a swarm-like distributed cloud management system that uses live migration of containers to dynamically reassign application components to the different servers. It is based on the idea of “pheromone” robots. An additional mobile agent process is placed inside each application container to control the migration process. The number of parallel container migrations needed to reach an optimal state of the cloud is obtained using models, experiments, and simulations. We show that in the most common scenarios the proposed swarm-like algorithm performs better than existing systems, and due to its architecture it is also more scalable and resilient to container death. It also adapts to the influx of containers and addition of new servers to the cloud automatically.


2021 ◽  
pp. 1-15
Author(s):  
Mengyao Cui ◽  
Seung-Soo Baek ◽  
Rubén González Crespo ◽  
R. Premalatha

BACKGROUND: Health monitoring is important for early disease diagnosis and will reduce the discomfort and treatment expenses, which is very relevant in terms of prevention. The early diagnosis and treatment of multiple conditions will improve solutions to the patient’s healthcare radically. A concept model for the real-time patient tracking system is the primary goal of the method. The Internet of things (IoT) has made health systems accessible for programs based on the value of patient health. OBJECTIVE: In this paper, the IoT-based cloud computing for patient health monitoring framework (IoT-CCPHM), has been proposed for effective monitoring of the patients. METHOD: The emerging connected sensors and IoT devices monitor and test the cardiac speed, oxygen saturation percentage, body temperature, and patient’s eye movement. The collected data are used in the cloud database to evaluate the patient’s health, and the effects of all measures are stored. The IoT-CCPHM maintains that the medical record is processed in the cloud servers. RESULTS: The experimental results show that patient health monitoring is a reliable way to improve health effectively.


2021 ◽  
Vol 11 (11) ◽  
pp. 5039
Author(s):  
Yosoon Choi ◽  
Yeanjae Kim

A smart helmet is a wearable device that has attracted attention in various fields, especially in applied sciences, where extensive studies have been conducted in the past decade. In this study, the current status and trends of smart helmet research were systematically reviewed. Five research questions were set to investigate the research status of smart helmets according to the year and application field, as well as the trend of smart helmet development in terms of types of sensors, microcontrollers, and wireless communication technology. A total of 103 academic research articles published in the past 11 years (2009–2020) were analyzed to address the research questions. The results showed that the number of smart helmet applications reported in literature has been increasing rapidly since 2018. The applications have focused mostly on ensuring the safety of motorcyclists. A single-board-based modular concept unit, such as the Arduino board, and sensor for monitoring human health have been used the most for developing smart helmets. Approximately 85% of smart helmets have been developed to date using wireless communication technology to transmit data obtained from smart helmets to other smart devices or cloud servers.


Sign in / Sign up

Export Citation Format

Share Document