NONEXTENSIVE STATISTICS IN ASTRO-PARTICLE PHYSICS: STATUS AND IMPACT FOR DARK MATTER/DARK ENERGY THEORY

Author(s):  
M. P. LEUBNER
2015 ◽  
Vol 24 (02) ◽  
pp. 1550012 ◽  
Author(s):  
B. A. Robson

Within the framework of the Generation Model (GM) of particle physics, gravity is identified with the very weak, universal and attractive residual color interactions acting between the colorless particles of ordinary matter (electrons, neutrons and protons), which are composite structures. This gravitational interaction is mediated by massless vector bosons (hypergluons), which self-interact so that the interaction has two additional features not present in Newtonian gravitation: (i) asymptotic freedom and (ii) color confinement. These two additional properties of the gravitational interaction negate the need for the notions of both dark matter and dark energy.


2013 ◽  
Vol 53 (A) ◽  
pp. 528-533
Author(s):  
Giulio Auriemma

The most interesting cosmological open problems, baryon asymmetry, dark matter, inflation and dark energy, are not explained by the standard model of particle physics (SM). The final<br />goal of the Large Hadron Collider an experimental verification of the SM in the Higgs sector, and also a search for evidence of new physics beyond it. In this paper we will report some of the results obtained in 2010 and 2011, from the LHCb experiment dedicated to the study of CP violations and rare decays of heavy quarks.


2004 ◽  
Vol 19 (31) ◽  
pp. 5333-5333
Author(s):  
PHILIP MANNHEIM

We show that the origin of the dark matter and dark energy problems originates in the assumption of standard Einstein gravity that Newton's constant is fundamental. We discuss an alternate, conformal invariant, metric theory of gravity in which Newton's constant is induced dynamically, with the global induced one which is effective for cosmology being altogether weaker than the local induced one needed for the solar system. We find that in the theory dark matter is no longer needed, and that the accelerating universe data can be fitted without fine-tuning using a cosmological constant as large as particle physics suggests. In the conformal theory then it is not the cosmological constant which is quenched but rather the amount of gravity that it produces.


Author(s):  
Michael Silberstein ◽  
W.M. Stuckey ◽  
Timothy McDevitt

The main thread of chapter 6 prompts the need for quantum gravity (QG) and introduces the RBW approach to QG, unification in particle physics, dark matter, and dark energy. The details of RBW’s modified Regge calculus and modified lattice gauge theory approaches are conveyed conceptually in the main thread. The RBW fits of galactic rotation curves, galactic cluster mass profiles, the angular power spectrum of the cosmic microwave background, and the Union2.1 supernova data associated with dark matter and dark energy are in Foundational Physics for Chapter 6. In Philosophy of Physics for Chapter 6, RBW’s taxonomic location with respect to other discrete approaches to QG is detailed and it is argued that the search for QG is stymied by the dynamical paradigm across the board. Further, it is maintained that an adynamical global constraint as the basis for QG in the block universe provides a self-vindicating unification of physics.


2018 ◽  
Vol 33 (20) ◽  
pp. 1830017 ◽  
Author(s):  
Pran Nath

We give here an overview of recent developments in high energy physics and cosmology and their interconnections that relate to unification, and discuss prospects for the future. Thus there are currently three empirical data that point to supersymmetry as an underlying symmetry of particle physics: the unification of gauge couplings within supersymmetry, the fact that nature respects the supersymmetry prediction that the Higgs boson mass lie below 130 GeV, and vacuum stability up to the Planck scale with a Higgs boson mass at [Formula: see text][Formula: see text]125 GeV while the Standard Model does not do that. Coupled with the fact that supersymmetry solves the big hierarchy problem related to the quadratic divergence to the Higgs boson mass square along with the fact that there is no alternative paradigm that allows us to extrapolate physics from the electroweak scale to the grand unification scale consistent with experiment, supersymmetry remains a compelling framework for new physics beyond the Standard Model. The large loop correction to the Higgs boson mass in supersymmetry to lift the tree mass to the experimentally observable value, indicates a larger value of the scale of weak scale supersymmetry, making the observation of sparticles more challenging but still within reach at the LHC for the lightest ones. Recent analyses show that a high energy LHC (HE-LHC) operating at 27 TeV running at its optimal luminosity of [Formula: see text] can reduce the discovery period by several years relative to HL-LHC and significantly extend the reach in parameter space of models. In the coming years several experiments related to neutrino physics, searches for supersymmetry, on dark matter and dark energy will have direct impact on the unification frontier. Thus the discovery of sparticles will establish supersymmetry as a fundamental symmetry of nature and also lend direct support for strings. Further, discovery of sparticles associated with missing energy will constitute discovery of dark matter with LSP being the dark matter. On the cosmology front more accurate measurement of the equation of state, i.e. [Formula: see text], will shed light on the nature of dark energy. Specifically, [Formula: see text] will likely indicate the existence of a dynamical field, possibly quintessence, responsible for dark energy and [Formula: see text] would indicate an entirely new sector of physics. Further, more precise measurements of the ratio [Formula: see text] of tensor to scalar power spectrum, of the scalar and tensor spectral indices [Formula: see text] and [Formula: see text] and of non-Gaussianity will hopefully allow us to realize a Standard Model of inflation. These results will be a guide to further model building that incorporates unification of particle physics and cosmology.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 198
Author(s):  
Janning Meinert ◽  
Ralf Hofmann

Motivated by the SU(2)CMB modification of the cosmological model ΛCDM, we consider isolated fuzzy-dark-matter lumps, made of ultralight axion particles whose masses arise due to distinct SU(2) Yang–Mills scales and the Planck mass MP. In contrast to SU(2)CMB, these Yang–Mills theories are in confining phases (zero temperature) throughout most of the Universe’s history and associate with the three lepton flavours of the Standard Model of particle physics. As the Universe expands, axionic fuzzy dark matter comprises a three-component fluid which undergoes certain depercolation transitions when dark energy (a global axion condensate) is converted into dark matter. We extract the lightest axion mass ma,e=0.675×10−23eV from well motivated model fits to observed rotation curves in low-surface-brightness galaxies (SPARC catalogue). Since the virial mass of an isolated lump solely depends on MP and the associated Yang–Mills scale the properties of an e-lump predict those of μ- and τ-lumps. As a result, a typical e-lump virial mass ∼6.3×1010M⊙ suggests that massive compact objects in galactic centers such as Sagittarius A* in the Milky Way are (merged) μ- and τ-lumps. In addition, τ-lumps may constitute globular clusters. SU(2)CMB is always thermalised, and its axion condensate never has depercolated. If the axial anomaly indeed would link leptons with dark matter and the CMB with dark energy then this would demystify the dark Universe through a firmly established feature of particle physics.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 8-16 ◽  
Author(s):  
BC Paul

Cosmological and astronomical observations predict that the present Universe is passing through an accelerating phase of expansion. The Universe emerged out of an exponential phase in the very early Universe. The scalar field of the standard model of particle physics when used in cosmology admits such a phase of expansion known as inflation. The most favourable condition for inflation with scalar field to admit an Inflationary scenario is that the potential energy must dominate over the kinetic energy which one obtains with a flat potential. Thereafter the Universe enters into a matter dominated phase when the field oscillates at the minimum of the potential. But it is not possible to accommodate the present accelerating phase in the Einstein’s gravity. It is known from observational analysis that about 73 % matter is responsible for the late phase expansion and 23 % matter called Dark Matter is responsible for a stable galaxy. We discuss here the relevant fields and theories that are useful for describing the late Universe. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10374 BIBECHANA 11(1) (2014) 8-16


Sign in / Sign up

Export Citation Format

Share Document