scholarly journals Microscopic Origin of Pairing

2013 ◽  
pp. 263-273 ◽  
Author(s):  
Eduard E. Saperstein ◽  
Marcello Baldo
Keyword(s):  
2020 ◽  
Vol 117 (25) ◽  
pp. 253102
Author(s):  
Benjamin M. Kupp ◽  
Gang Qiu ◽  
Yixiu Wang ◽  
Clayton B. Casper ◽  
Thomas M. Wallis ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Carlo Angelantonj ◽  
Quentin Bonnefoy ◽  
Cezar Condeescu ◽  
Emilian Dudas

Abstract Recently, Kim, Shiu and Vafa proposed general consistency conditions for six dimensional supergravity theories with minimal supersymmetry coming from couplings to strings. We test them in explicit perturbative orientifold models in order to unravel the microscopic origin of these constraints. Based on the perturbative data, we conjecture the existence of null charges Q∙Q = 0 for any six-dimensional theory with at least one tensor multiplet, coupling to string defects of charge Q. We then include the new constraint to exclude some six-dimensional supersymmetric anomaly-free examples that have currently no string or F-theory realization. We also investigate the constraints from the couplings to string defects in case where supersymmetry is broken in tachyon free vacua, containing non-BPS configurations of brane supersymmetry breaking type, where the breaking is localized on antibranes. In this case, some conditions have naturally to be changed or relaxed whenever the string defects experience supersymmetry breaking, whereas the constraints are still valid if they are geometrically separated from the supersymmetry breaking source.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yusuke Hiejima ◽  
Takumitsu Kida ◽  
Koh-hei Nitta

AbstractIn situ Raman spectroscopy is applied for polyethylene solid under various environments to elucidate the morphological and conformational changes. The trans conformation retains up to higher temperature for high-density polyethylene, reflecting higher stability of the orthorhombic crystals composed of stacked trans chains. It is suggested that the conversion of the non-crystalline trans chains to the crystalline phase is the microscopic origin of thermal history in the crystallinity, whereas the transformation between the trans and gauche conformers is practically in thermal equilibrium. Microscopic and dynamic mechanism of deformation during uniaxial stretching is investigated for the molecular orientation and the microscopic load sharing on the crystalline and amorphous chains. Lower crystallinity results in smoother and higher orientation toward the stretching direction, as well as higher load on the amorphous chains, during tensile elongation.


2014 ◽  
Vol 131 ◽  
pp. 105-109 ◽  
Author(s):  
Friedemann D. Heinz ◽  
Matthias Breitwieser ◽  
Paul Gundel ◽  
Markus König ◽  
Matthias Hörteis ◽  
...  

2012 ◽  
Vol 2012 (25) ◽  
pp. 3980-3983 ◽  
Author(s):  
Julien Lejeune ◽  
Jean-Daniel Cafun ◽  
Giulia Fornasieri ◽  
Jean-Blaise Brubach ◽  
Gaëlle Creff ◽  
...  

2008 ◽  
Vol 23 (14n15) ◽  
pp. 2161-2164 ◽  
Author(s):  
JUN NISHIMURA

We perform a direct test of the gauge/gravity duality by studying one-dimensional U (N) gauge theory with 16 supercharges at finite temperature using Monte Carlo simulation. In the 't Hooft large-N limit and in the strong coupling limit, the model is expected to have a dual gravity description in terms of the near-extremal black 0-brane solution in ten-dimensional type IIA supergravity. Our results provide the first example, in which the microscopic origin of the black hole thermodynamics is accounted for by solving explicitly the strongly coupled dynamics of the open strings attached to the D-branes.


2007 ◽  
Vol 5 (20) ◽  
pp. 303-310 ◽  
Author(s):  
M Upmanyu ◽  
H.L Wang ◽  
H.Y Liang ◽  
R Mahajan

Coupling between axial and torsional degrees of freedom often modifies the conformation and expression of natural and synthetic filamentous aggregates. Recent studies on chiral single-walled carbon nanotubes and B-DNA reveal a reversal in the sign of the twist–stretch coupling at large strains. The similarity in the response in these two distinct supramolecular assemblies and at high strains suggests a fundamental, chirality-dependent nonlinear elastic behaviour. Here we seek the link between the microscopic origin of the nonlinearities and the effective twist–stretch coupling using energy-based theoretical frameworks and model simulations. Our analysis reveals a sensitive interplay between the deformation energetics and the sign of the coupling, highlighting robust design principles that determine both the sign and extent of these couplings. These design principles have already been exploited by nature to dynamically engineer such couplings, and have broad implications in mechanically coupled actuation, propulsion and transport in biology and technology.


Sign in / Sign up

Export Citation Format

Share Document