A NOVEL IDENTITY-BASED KEY-INSULATED CONVERTIBLE AUTHENTICATED ENCRYPTION SCHEME

2011 ◽  
Vol 22 (03) ◽  
pp. 739-756 ◽  
Author(s):  
HAN-YU LIN ◽  
CHIEN-LUNG HSU

For securing confidential applications such as credit card transactions, on-line auctions and business contract signing, etc., a convertible authenticated encryption (CAE) scheme simultaneously satisfying the properties of authenticity, confidentiality and non-repudiation is a better choice. By combining the advantages of identity-based systems and key-insulated ones, in this paper, we propose the first novel identity-based key-insulated CAE (IB-KICAE) scheme from pairings. Integrating with key-insulated systems, our scheme can effectively mitigate the impact caused by key exposure, as each user can periodically update his private key while the corresponding public one remains unchanged. The proposed scheme is conversion-free and supports unbounded time periods and random-access key-updates. Moreover, to guarantee its practical feasibility, the essential security requirement of confidentiality against indistinguishability under adaptive chosen-ciphertext attacks (IND-CCA2) and that of unforgeability against existential forgery under adaptive chosen-message attacks (EF-CMA) are realized in the random oracle model.

2019 ◽  
Vol 48 (4) ◽  
pp. 579-589
Author(s):  
Han-Yu Lin

When it comes to secure transactions online, the requirements of confidentiality and authenticity are usually concerned the most. The former prevents unauthorized reading, while the latter ensures authorized access. Hybrid cryptographic mechanisms such as authenticated encryption (AE) schemes, simultaneously combine the functions of public key encryption and digital signature. Some AE schemes also provide a cost-free arbitration mechanism to deal with the signer’s later repudiation. Such schemes have been found to have numerous practical applications like on-line credit card transactions, confidential contract signing and the protection of digital evidence, etc. However, a designated verifier should also have the ability to convince any third party that he/she is indeed the intended recipient. In this paper, the author presents a novel verifiable authenticated encryption (VAE) scheme with the functionality of recipient proof. Furthermore, the paper shows that the proposed VAE scheme is non-delegatable and provably secure under the random oracle proof models. A non-delegatable hybrid cryptographic scheme provides a higher security level even if the shared common key is compromised. Specifically, the author of the paper will demonstrate that the designed construction is proved secure against adaptive chosen-ciphertext attacks (CCA2) assuming the hardness of Bilinear Square Diffie-Hellman Problem (BSDHP) and secure against adaptive chosen-message attacks (CMA) assuming the hardness of q-Strong Diffie-Hellman Problems (q-SDHP).


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244978
Author(s):  
Chunhua Jin ◽  
Ge Kan ◽  
Guanhua Chen ◽  
Changhui Yu ◽  
Ying Jin ◽  
...  

The location-based services can provide users with the requested location information. But users also need to disclose their current location to the location-based service provider. Therefore, how to protect user’s location privacy is a major concern. In this paper, we propose a heterogeneous deniable authenticated encryption scheme called HDAE for location-based services. The proposed scheme permits a sender in a public key infrastructure environment to transmit a message to a receiver in an identity-based environment. Our design utilizes a hybrid encryption method combing the tag-key encapsulation mechanism (tag-KEM) and the data encapsulation mechanism (DEM), which is well adopted for location-based services applications. We give how to design an HDAE scheme utilizing a heterogeneous deniable authenticated tag-KEM (HDATK) and a DEM. We also construct an HDATK scheme and provide security proof in the random oracle model. Comprehensive analysis shows that our scheme is efficient and secure. In addition, we give an application of the HDAE to a location-based services system.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Quanrun Li ◽  
Chingfang Hsu ◽  
Debiao He ◽  
Kim-Kwang Raymond Choo ◽  
Peng Gong

With the rapid development of quantum computing and quantum information technology, the universal quantum computer will emerge in the near decades with a very high probability and it could break most of the current public key cryptosystems totally. Due to the ability of withstanding the universal quantum computer’s attack, the lattice-based cryptosystems have received lots of attention from both industry and academia. In this paper, we propose an identity-based blind signature scheme using lattice. We also prove that the proposed scheme is provably secure in the random oracle model. The performance analysis shows that the proposed scheme has less mean value of sampling times and smaller signature size than previous schemes. Thus, the proposed scheme is more suitable for practical applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Congge Xie ◽  
Jian Weng ◽  
Jinming Wen

In 2014, a new security definition of a revocable identity-based signature (RIBS) with signing key exposure resistance was introduced. Based on this new definition, many scalable RIBS schemes with signing key exposure resistance were proposed. However, the security of these schemes is based on traditional complexity assumption, which is not secure against attacks in the quantum era. Lattice-based cryptography has many attractive features, and it is believed to be secure against quantum computing attacks. We reviewed existing lattice-based RIBS schemes and found that all these schemes are vulnerable to signing key exposure. Hence, in this paper, we propose the first lattice-based RIBS scheme with signing key exposure resistance by using the left-right lattices and delegation technology. In addition, we employ a complete subtree revocation method to ensure our construction meeting scalability. Finally, we prove that our RIBS scheme is selective-ID existentially unforgeable against chosen message attacks (EUF-sID-CMA) under the standard short integer solutions (SIS) assumption in the random oracle model.


2013 ◽  
Vol 457-458 ◽  
pp. 1262-1265
Author(s):  
Min Qin Chen ◽  
Qiao Yan Wen ◽  
Zheng Ping Jin ◽  
Hua Zhang

Based an identity-based signature scheme, we givea certificateless signature scheme. And then we propose a certificateless blind signature (CLBS) scheme in this paper. This schemeis more efficient than those of previous schemes by pre-computing the pairing e (P, P)=g. Based on CL-PKC, it eliminates theusing of certificates in the signature scheme with respect to thetraditional public key cryptography (PKC) and solves key escrowproblems in ID-based signature schemes. Meanwhile it retains themerits of BS schemes. The proposed CLBS scheme is existentialunforgeable in the random oracle model under the intractabilityof the q-Strong Diffie-Hellman problem.


2020 ◽  
Vol 63 (12) ◽  
pp. 1835-1848
Author(s):  
Ge Wu ◽  
Zhen Zhao ◽  
Fuchun Guo ◽  
Willy Susilo ◽  
Futai Zhang

Abstract A tightly secure scheme has a reduction, where the reduction loss is a small constant. Identity-based signature (IBS) is an important cryptographic primitive, and tightly secure IBS schemes enjoy the advantage that the security parameter can be optimal to achieve a certain security level. General constructions of IBS schemes (Bellare, M., Namprempre, C., and Neven, G. (2004) Security Proofs for Identity-Based Identification and Signature Schemes. In Proc. EUROCRYPT 2004, May 2–6, pp. 268–286. Springer, Berlin, Interlaken, Switzerland; Galindo, D., Herranz, J., and Kiltz, E. (2006) On the Generic Construction of Identity-Based Signatures With Additional Properties. In Proceedings of ASIACRYPT 2006, December 3–7, pp. 178–193. Springer, Berlin, Shanghai, China) and their security have been extensively studied. However, the security is not tight and how to generally construct a tightly secure IBS scheme remains unknown. In this paper, we concentrate on the general constructions of IBS schemes. We first take an insight into previous constructions and analyze the reason why it cannot achieve tight security. To further study possible tightly secure constructions, we propose another general construction, which could be seen as a different framework of IBS schemes. Our construction requires two traditional signature schemes, whereas the construction by Bellare et al. uses one scheme in a two-round iteration. There are no additional operations in our general construction. Its main advantage is providing the possibility of achieving tight security for IBS schemes in the random oracle model. Combining two known signature schemes, we present an efficient IBS scheme with tight security as an example.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yingying Zhang ◽  
Jiwen Zeng ◽  
Wei Li ◽  
Huilin Zhu

Ring signature is a kind of digital signature which can protect the identity of the signer. Certificateless public key cryptography not only overcomes key escrow problem but also does not lose some advantages of identity-based cryptography. Certificateless ring signature integrates ring signature with certificateless public key cryptography. In this paper, we propose an efficient certificateless ring signature; it has only three bilinear pairing operations in the verify algorithm. The scheme is proved to be unforgeable in the random oracle model.


2014 ◽  
Vol 687-691 ◽  
pp. 2165-2168
Author(s):  
Xue Dong Dong ◽  
Hui Min Lu

Certificateless-based signature can eliminate the need of certificates in the Public Key Infrastructure and solve the inherent key escrow problem in the identity-based cryptography. In 2012 Zhang et al. [J. Zhang and J. Mao, An efficient RSA-based certificateless signature scheme, Journal of Systems and Software, vol. 85, pp. 638-642, 2012] proposed the first certificateless signature scheme based on RSA operations and showed that their scheme is provably secure in the random oracle model. However, He et al. [D. He, M.Khan, and S. Wu, On the security of a RSA-based certificateless signature scheme, International Journal of Network Security, vol.16, no.1, pp.78-80, 2014] recently showed that Zhang et al.'s scheme is insecure against a type I adversary who can replace users' public keys. In this paper, we propose an improved version based on RSA which not only keeps the original security properties of the signature, but also is secure against a type I adversary.


2010 ◽  
Vol 439-440 ◽  
pp. 1271-1276 ◽  
Author(s):  
Jian Hong Zhang ◽  
Hua Chen ◽  
Yi Xian Yang

Traditional public key cryptosystem (PKC) requires high maintenance cost for certificate management. Although, identity based cryptosystem (IBC) reduces the overhead of management, it suffers from the drawback of key escrow. Certificate-based cryptosystem solves certificate revocation problem and eliminate third party queries in the traditional PKI. In addition, it also solves the inherent key escrow problem in the IBC. In this paper, we proposed an efficient certificate-based signature and the result shows that the scheme is provable secure against two game attacks of certificate-based signature in the random oracle model. The security is closely related to the difficulty of solving the discrete logarithm problem.


Sign in / Sign up

Export Citation Format

Share Document