scholarly journals Massive vector bosons: Is the geometrical interpretation as a spontaneously broken gauge theory possible at all scales?

2015 ◽  
Vol 27 (10) ◽  
pp. 1550024 ◽  
Author(s):  
Michael Dütsch

The usual derivation of the Lagrangian of a model for massive vector bosons, by spontaneous symmetry breaking of a gauge theory, implies that the prefactors of the various interaction terms are uniquely determined functions of the coupling constant(s) and the masses. Since, under the renormalization group (RG) flow, different interaction terms get different loop-corrections, it is uncertain whether these functions remain fixed under this flow. We investigate this question for the [Formula: see text]-Higgs-model to 1-loop order in the framework of Epstein–Glaser renormalization. Our main result reads: choosing the renormalization mass scale(s) in a way corresponding to the minimal subtraction scheme, the geometrical interpretation as a spontaneously broken gauge theory gets lost under the RG-flow. This holds also for the clearly stronger property of BRST-invariance of the Lagrangian. On the other hand, we prove that physical consistency, which is a weak form of BRST-invariance of the time-ordered products, is maintained under the RG-flow.

2010 ◽  
Vol 25 (18n19) ◽  
pp. 3603-3619 ◽  
Author(s):  
D. DJUKANOVIC ◽  
J. GEGELIA ◽  
S. SCHERER

A parity-conserving and Lorentz-invariant effective field theory of self-interacting massive vector fields is considered. For the interaction terms with dimensionless coupling constants the canonical quantization is performed. It is shown that the self-consistency condition of this system with the second-class constraints in combination with the perturbative renormalizability leads to an SU(2) Yang–Mills theory with an additional mass term.


2006 ◽  
Vol 2006 (01) ◽  
pp. 066-066 ◽  
Author(s):  
Simon D Badger ◽  
E.W.Nigel Glover ◽  
Valentin V Khoze

2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


2018 ◽  
Vol 96 (12) ◽  
pp. 1409-1412 ◽  
Author(s):  
D.G.C. McKeon

Supergravity in 2 + 1 dimensions has a set of first-class constraints that result in two bosonic and one fermionic gauge invariances. When one uses Faddeev–Popov quantization, these gauge invariances result in four fermionic scalar ghosts and two bosonic Majorana spinor ghosts. The BRST invariance of the effective Lagrangian is found. As an example of a radiative correction, we compute the phase of the one-loop effective action in the presence of a background spin connection, and show that it vanishes. This indicates that unlike a spinor coupled to a gauge field in 2 + 1 dimensions, there is no dynamical generation of a topological mass in this model. An additional example of how a BRST invariant effective action can arise in a gauge theory is provided in Appendix B where the BRST effective action for the classical Palatini action in 1 + 1 dimensions is examined.


1999 ◽  
Vol 1999 (10) ◽  
pp. 012-012
Author(s):  
Peter H Fisher ◽  
Yoshi Uchida
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this study, the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation formed by tunneling of a massive vector boson particle from the 2+1 dimensional new-type black hole was investigated. We used modified massive vector boson equation based on the GUP. Then, the Hamilton-Jacobi quantum tunneling approach was used to work out the tunneling probability of the massive vector boson particle and Hawking temperature of the black hole. Due to the GUP effect, the modified Hawking temperature was found to depend on the black hole properties, on the AdS3 radius, and on the energy, mass, and total angular momentum of the tunneling massive vector boson. In the light of these results, we also observed that modified Hawking temperature increases by the total angular momentum of the particle while it decreases by the energy and mass of the particle and the graviton mass. Also, in the context of the GUP, we see that the Hawking temperature due to the tunneling massive vector boson is completely different from both that of the spin-0 scalar and that of the spin-1/2 Dirac particles obtained in the previous study. We also calculate the heat capacity of the black hole using the modified Hawking temperature and then discuss influence of the GUP on the stability of the black hole.


Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Marta Dudek ◽  
Janusz Garecki

In this paper, we show that the general relativity action (and Lagrangian) in recent Einstein–Palatini formulation is equivalent in four dimensions to the action (and Langrangian) of a gauge field. First, we briefly showcase the Einstein–Palatini (EP) action, and then we present how Einstein fields equations can be derived from it. In the next section, we study Einstein–Palatini action integral for general relativity with a positive cosmological constant Λ in terms of the corrected curvature Ω c o r . We see that in terms of Ω c o r this action takes the form typical for a gauge field. Finally, we give a geometrical interpretation of the corrected curvature Ω c o r .


2012 ◽  
Vol 27 (21) ◽  
pp. 1250117 ◽  
Author(s):  
FAYYAZUDDIN

A model for electroweak unification of quarks and leptons, in a gauge group SUC(3) × SU(4) × UX(1) is constructed. The model requires, three generations of quarks and leptons which are replicas (mirror) of the standard quarks and leptons. The gauge group SU(4) × UX(1) is broken in such a way so as to reproduce standard model and to generate heavy masses for the vector bosons [Formula: see text], the leptoquarks and mirror fermions. It is shown lower limit on mass scale of mirror fermions is [Formula: see text], E- being the lightest mirror fermion coupled to Z boson. As the universe expands, the heavy matter is decoupled at an early stage of expansion and may be a source of dark matter. Leptoquarks in the model connect the standard model and mirror fermions. Baryon genesis in our universe implies antibaryon genesis in mirror universe.


1990 ◽  
Vol 31 (3) ◽  
pp. 763-770 ◽  
Author(s):  
D. C. Ionescu ◽  
J. Reinhardt ◽  
B. Müller ◽  
W. Greiner ◽  
G. Soff

Sign in / Sign up

Export Citation Format

Share Document