Causal Coupling Between Electrophysiological Signals, Cerebral Hemodynamics and Systemic Blood Supply Oscillations in Mayer Wave Frequency Range

2019 ◽  
Vol 29 (05) ◽  
pp. 1850033 ◽  
Author(s):  
P. Lachert ◽  
J. Zygierewicz ◽  
D. Janusek ◽  
P. Pulawski ◽  
P. Sawosz ◽  
...  

The aim of the study was to assess causal coupling between neuronal activity, microvascular hemodynamics and blood supply oscillations in the Mayer wave frequency range. An electroencephalogram, cerebral blood oxygenation changes, an electrocardiogram and blood pressure were recorded during rest and during a movement task. Causal coupling between them was evaluated using directed transfer function, a measure based on the Granger causality principle. The multivariate autoregressive model was fitted to all the signals simultaneously, which made it possible to construct a complete scheme of interactions between the considered signals. The obtained pattern of interactions in the resting state estimated in the 0.05–0.15 Hz band revealed a predominant influence of blood pressure oscillations on all the other variables. Reciprocal connections between blood pressure and heart rate variability time series indicated the presence of feedback loops between these signals. During movement, the pattern of connections did not change dramatically. The number of connections decreased, but the couplings between blood pressure and heart rate variability signal were not significantly changed, and the strong influence of the decreased blood hemoglobin concentration on the oxygenated hemoglobin concentration persisted. For the first time our results provided a comprehensive scheme of interactions between electrical and hemodynamic brain signals, heart rate and blood pressure oscillations. Persistent reciprocal connections between blood pressure and heart rate variability time series suggest possible feedforward and feedback coupling of cardiovascular variables which may lead to the observed oscillations in Mayer wave range.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.


2021 ◽  
pp. 1-7
Author(s):  
LaBarron K. Hill ◽  
Julian F. Thayer ◽  
DeWayne P. Williams ◽  
James D. Halbert ◽  
Guang Hao ◽  
...  

1989 ◽  
Vol 257 (6) ◽  
pp. R1506-R1511 ◽  
Author(s):  
L. C. Weaver ◽  
R. D. Stein

Previous experiments in our laboratory have shown that discharge of splenic, mesenteric, and splanchnic nerves is well maintained after spinal cord transection in chloralose-anesthetized cats (8, 9, 11). The primary purpose of this investigation was to determine if maintained sympathetic discharge could be observed after spinal transection in the absence of chloralose anesthesia. In cats anesthetized with alphaxalone-alphadolone, changes in splanchnic discharge, blood pressure, and heart rate caused by decerebration and removal of the forebrain were observed. This procedure decreased blood pressure, increased heart rate, and had no immediate effect on sympathetic discharge or its rhythm (assessed by power density spectral analysis). One hour after decerebration and termination of anesthesia, splanchnic discharge had increased by approximately 36%. Next, effects of spinal cord transection on discharge of splanchnic, mesenteric, and renal nerves were observed in the decerebrate-unanesthetized cats. Splanchnic discharge decreased by 50%, mesenteric nerve discharge was unchanged, and renal nerve discharge decreased by 97%. Therefore, splanchnic nerve discharge was not as well maintained in decerebrate-unanesthetized cats as it had been in chloralose-anesthetized animals, and the remaining splanchnic discharge appeared to affect mesenteric nerves preferentially. Finally, spectral analysis of the splanchnic discharge demonstrated that before cord transection, most of the signal was in the 0- to 6-Hz frequency range, whereas after transection the proportion of signal in this frequency range was significantly reduced and the proportion in higher frequencies (7-25 Hz) was significantly increased. This loss of low-frequency rhythmicity is consistent with findings in our previous studies in chloralose-anesthetized cats.


2014 ◽  
Vol 37 (8) ◽  
pp. 779-784 ◽  
Author(s):  
Hiromi Mori ◽  
Isao Saito ◽  
Eri Eguchi ◽  
Koutatsu Maruyama ◽  
Tadahiro Kato ◽  
...  

2017 ◽  
Vol 17 (2) ◽  
pp. 5-14 ◽  
Author(s):  
Milana Drumond Ramos Santana ◽  
Eli Carlos Martiniano ◽  
Larissa Raylane Lucas Monteiro ◽  
Maria Do Socorro Santos De Oliveira ◽  
Vitor E. Valenti ◽  
...  

AbstractIntroduction: There is an increase in level of stress in the general population because of the social, personal and professional demands. Currently, there are only simple tools that can safely measure this stress such as levels of cortisol and heart rate variability (HRV). Objective: To analyze the relationship between salivary cortisol and the cardiac autonomic modulation. Methods: A total of fifty-one male and female subjects between 18 and 40 years old were evaluated. Saliva collection was achieved for the salivary cortisol dosage. The collection was performed through the SalivetteR tube. After this collection, the median cortisol levels (0.24 ug/dl) were analyzed and the volunteers were divided into two groups: i) cortisol below the mediane ii) cortisol above the median. After this division, each group consisted of 25 volunteers and then was verified the following information: age, gender, weight, height, body mass index (BMI), blood pressure. Shortly thereafter was assessment of cardiac autonomic modulation por meio da HRV. The Polar RS800cx heart rate receiver was placed on the chest of the volunteers, in the vicinity of the distal third of the sternum. The volunteers were instructed to remain in rest with spontaneous breathing in dorsal position for 20 minutes. HRV analysis included geometric, time and frequency domain indices. Results: There were no statistical differences for the two groups regarding systolic and diastolic blood pressure, heart rate, RR intervals or linear and frequency indices for the volunteers. In addition, also there was no correlation the cortisol with the analyzed variables (SAP, p=0.460; DAP, p = 0.270; HR, p = 0.360; RR, p = 0.380; SDNN, p = 0.510; rMSSD, p = 0.660; pNN50, p = 0.820; RRtri, p = 0.170; TINN, p = 0.470; SD1, p = 0.650; SD2, p = 0.500; LF [ms2], p = 0.880; LF [nu], p = 0.970; HF [ms2], p = 0.870; HF [nu], p = 0.960; LF/HF, p = 0.380 Conclusion: Heart rate variability autonomic control was unchanged in healthy subjects with physiological distribution of salivary cortisol levels. There was no association between normal salivary cortisol and resting autonomic regulation of heart rate.


Author(s):  
Arundhati Goley ◽  
A. Mooventhan ◽  
NK. Manjunath

Abstract Background Hydrotherapeutic applications to the head and spine have shown to improve cardiovascular and autonomic functions. There is lack of study reporting the effect of either neutral spinal bath (NSB) or neutral spinal spray (NSS). Hence, the present study was conducted to evaluate and compare the effects of both NSB and NSS in healthy volunteers. Methods Thirty healthy subjects were recruited and randomized into either neutral spinal bath group (NSBG) or neutral spinal spray group (NSSG). A single session of NSB, NSS was given for 15 min to the NSBG and NSSG, respectively. Assessments were taken before and after the interventions. Results Results of this study showed a significant reduction in low-frequency (LF) to high-frequency (HF) (LF/HF) ratio of heart rate variability (HRV) spectrum in NSBG compared with NSSG (p=0.026). Within-group analysis of both NSBG and NSSG showed a significant increase in the mean of the intervals between adjacent QRS complexes or the instantaneous heart rate (HR) (RRI) (p=0.002; p=0.009, respectively), along with a significant reduction in HR (p=0.002; p=0.004, respectively). But, a significant reduction in systolic blood pressure (SBP) (p=0.037) and pulse pressure (PP) (p=0.017) was observed in NSSG, while a significant reduction in diastolic blood pressure (DBP) (p=0.008), mean arterial blood pressure (MAP) (p=0.008) and LF/HF ratio (p=0.041) was observed in NSBG. Conclusion Results of the study suggest that 15 min of both NSB and NSS might be effective in reducing HR and improving HRV. However, NSS is particularly effective in reducing SBP and PP, while NSB is particularly effective in reducing DBP and MAP along with improving sympathovagal balance in healthy volunteers.


Sign in / Sign up

Export Citation Format

Share Document