IN-LINE OPTICAL FIBER STRUCTURES FOR ENVIRONMENTAL SENSING

2008 ◽  
Vol 18 (01) ◽  
pp. 167-177 ◽  
Author(s):  
A. DHAWAN ◽  
M. D. GERHOLD ◽  
J. F. MUTH

Surface plasmon and evanescent wave sensors are attractive for chemical and biological sensing applications. They can work in aqueous media and when used in conjunction with the appropriate surface chemistry they can have high specificity and high sensitivity. However, most surface plasmon sensors are relatively complex as they are based on the use of attenuated total internal reflection to excite surface plasmon resonance in a thin gold film and require light to be incident at the appropriate angle and polarization. Other surface plasmon and optical affinity sensors have used the evanescent waves in planar waveguides to interact with the environment. These devices are sensitive but, have strict optical coupling requirements and are difficult to fabricate. In optical fiber evanescent wave sensors the interaction with the surrounding environment is usually obtained by tapering an optical fiber, which significantly weakens the structure, or by just utilizing the end of the optical fiber. In this paper, in-line optical fiber structures are presented that are mechanically robust, and provide a large interaction length for high sensitivity. They are compatible with standard chemistries for optical affinity sensing of biological compounds.

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1325 ◽  
Author(s):  
Ru-Jing Sun ◽  
Hung Ji Huang ◽  
Chien-Nan Hsiao ◽  
Yu-Wei Lin ◽  
Bo-Huei Liao ◽  
...  

A TiN-based substrate with high reusability presented high-sensitivity refractive index measurements in a home-built surface plasmon resonance (SPR) heterodyne phase interrogation system. TiN layers with and without additional inclined-deposited TiN (i-TiN) layers on glass substrates reached high bulk charge carrier densities of 1.28 × 1022 and 1.91 × 1022 cm−3, respectively. The additional 1.4 nm i-TiN layer of the nanorod array presented a detection limit of 6.1 × 10−7 RIU and was higher than that of the 46 nm TiN layer at 1.2 × 10−6 RIU when measuring the refractive index of a glucose solution. Furthermore, the long-term durability of the TiN-based substrate demonstrated by multiple processing experiments presented a high potential for various practical sensing applications.


2021 ◽  
Vol 48 (1) ◽  
pp. 0106002
Author(s):  
李钢敏 Li Gangmin ◽  
李致远 Li Zhiyuan ◽  
李正冉 Li Zhengran ◽  
王锦民 Wang Jinmin ◽  
夏历 Xia Li ◽  
...  

2020 ◽  
Vol 307 ◽  
pp. 84-89
Author(s):  
Aisyah Hanim Surani ◽  
Affa Rozana Abdul Rashid ◽  
N. Arsad ◽  
Amna Afiqah Nasution Hakim

An optimized study of tapered polymer optical fiber (POF) for measurement of different concentration of ethanol in deionized water (0.5%-3.5%) is proposed and demonstrated. This sensor operated based on evanescent wave absorption principle. The cladding of PMMA based POF is removed using organic solvents which can be used to create tapered POF. The unclad length around 1 cm and 3 cm as well as the waist diameters of POF in the range of 5 mm and 8 mm were compared for their efficiency as an ethanol sensor based on power output ratio values. Tapered POF with smaller waist diameter and longer tapered length showed higher sensitivity as ethanol sensor. Therefore, by tailoring the length and tapered diameter of POF, high sensitivity of ethanol sensor can be fabricated.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2500 ◽  
Author(s):  
Na Hee Kim ◽  
Junho Lee ◽  
Sungnam Park ◽  
Junyang Jung ◽  
Dokyoung Kim

We report a new Schiff base fluorescent probe which senses ferric ion, Fe(III), with a significant fluorescence enhancement response. The probe showed high sensitivity (0.8 ppb), and fast response time (<10 s) of Fe(III) in aqueous media. In addition, the probe showed the ability to sense Fe(III) in a HeLa cancer cell line, with very low cytotoxicity. As a new bio-imaging probe for Fe(III), it gave bright fluorescent images in confocal laser scanning microscopy (CLSM).


2020 ◽  
Author(s):  
Yanjun Hu ◽  
Abdul Ghaffar ◽  
Yulong Hou ◽  
Wenyi Liu ◽  
Fei Li ◽  
...  

Abstract A novel high sensitivity relative humidity (RH) sensor was proposed by using micro structure plastic optical fiber (POF) based on the surface plasmon resonance (SPR) effect and the evanescent wave (EW) loss. The micro structure was fabricated on the POF and coated with a gold layer and agarose, adopting the sputtering and dip-coating technique. These construction effects on the attenuation of power caused by the SPR effect and the EW loss were used to perform RH detections. The agarose’s different refractive indexes (RIs) caused fluctuations in the transmission power when the humidity increased. The demonstrated experimental results showed that the proposed sensor achieved a linear response from 20% RH to 80% RH with a high sensitivity of 0.595µW/%. The proposed sensor had the advantages of fast response and recovery. Furthermore, the temperature dependence and the repeatability test of the sensor were also performed.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3111 ◽  
Author(s):  
Chuanxin Teng ◽  
Houquan Liu ◽  
Hongchang Deng ◽  
Shijie Deng ◽  
Hongyan Yang ◽  
...  

A high sensitivity and easily fabricated liquid level sensor based on the V-groove structure plastic optical fiber (POF) was described. In the design, the V-groove structure on the POF is produced by using a die-press-print method, which effectively reduces the complexity of the fabrication process and makes it easier for mass production of liquid level sensors. This greatly enhances the usefulness of the proposed sensor in cost effective liquid level sensing applications. The transmission characteristic of the POF could be changed when the V-groove structure was immerged or emerged by the rising or falling liquid. The liquid level sensing performances for the sensor probes with different structural parameters were investigated, and the sensor performances for the liquids with different refractive indices and the sensor dynamic response were also tested. Experimental results show that the sensor’s sensitivity can reach 0.0698 mm−1, with a resolution of 2.5 mm. Results also show that the sensor has a fast response time of 920 ms.


Sign in / Sign up

Export Citation Format

Share Document