Stochastic dynamics for the solutions of a modified Holling–Tanner model with random perturbation

2014 ◽  
Vol 25 (11) ◽  
pp. 1450105 ◽  
Author(s):  
Zhenjie Liu

In this paper, we consider a stochastic nonautonomous predator–prey model with modified Leslie–Gower and Holling II schemes in the presence of environmental forcing. The deterministic model is the modified Holling–Tanner model which is an extension of the classical Leslie–Gower model. We show that there is a unique positive solution to the stochastic system for any positive initial value. Sufficient conditions for strong persistence in mean and extinction to the stochastic system are established.

2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Li Zu ◽  
Daqing Jiang ◽  
Fuquan Jiang

We consider a predator-prey model in which the preys disperse amongnpatches (n≥2) with stochastic perturbation. We show that there is a unique positive solution and find out the sufficient conditions for the extinction to the system with any given positive initial value. In addition, we investigate that there exists a stationary distribution for the system and it has ergodic property. Finally, we illustrate the dynamic behavior of the system withn=2via numerical simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Feng Rao ◽  
Shunjun Jiang ◽  
Yanqiu Li ◽  
Hao Liu

We investigate a Hassell-Varley type predator-prey model with stochastic perturbations. By perturbing the growth rate of prey population and death rate of predator population with white noise terms, we construct a stochastic differential equation model to discuss the effects of the environmental noise on the dynamical behaviors. Applying the comparison theorem of stochastic equations and Itô’s formula, the unique positive global solution to the model for any positive initial value is obtained. We find out some sufficient conditions for stochastically asymptotically boundedness, permanence, persistence in mean and extinction of the solution. Furthermore, a series of numerical simulations to illustrate our mathematical findings are presented. The results indicate that the stochastic perturbations do not cause drastic changes of the dynamics in the deterministic model when the noise intensity is small under some conditions, but while the noise intensity is sufficiently large, the species may die out, which does not happen in the deterministic model.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jinlei Liu ◽  
Wencai Zhao

In this paper, a stochastic Lotka–Volterra predator-prey model with discrete delays and feedback control is studied. Firstly, the existence and uniqueness of global positive solution are proved. Further, we investigate the asymptotic property of stochastic system at the positive equilibrium point of the corresponding deterministic model and establish sufficient conditions for the persistence and extinction of the model. Finally, the correctness of the theoretical derivation is verified by numerical simulations.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750040 ◽  
Author(s):  
Dianli Zhao ◽  
Sanling Yuan

In this paper, we concern a class of the generalized delayed stochastic predator–prey models with feedback controls based on discrete observations. The existence of global positive solution is given first. Then we discuss the deterministic model briefly, and establish the necessary conditions and the sufficient conditions for almost-sure extinction and persistence in mean for the stochastic system, where we show that the feedback controls can change the properties of the population systems significantly. Finally, numerical simulations are introduced to support the main results.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Jingliang Lv ◽  
Ke Wang

This paper presents an investigation of asymptotic properties of a stochastic predator-prey model with modified Leslie-Gower response. We obtain the global existence of positive unique solution of the stochastic model. That is, the solution of the system is positive and not to explode to infinity in a finite time. And we show some asymptotic properties of the stochastic system. Moreover, the sufficient conditions for persistence in mean and extinction are obtained. Finally we work out some figures to illustrate our main results.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550044 ◽  
Author(s):  
Baodan Tian ◽  
Liu Yang ◽  
Shouming Zhong

In this paper, we study a stochastic predator–prey model with Beddington–DeAngelis functional response and Allee effect, and show that there is a unique global positive solution to the system with the positive initial value. Sufficient conditions for global asymptotic stability are established. Some simulation figures are introduced to support the analytical findings.


2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Caifeng Du

AbstractIn this paper, we consider a nonautonomous predator–prey model with Holling type II schemes and a prey refuge. By applying the comparison theorem of differential equations and constructing a suitable Lyapunov function, sufficient conditions that guarantee the permanence and global stability of the system are obtained. By applying the oscillation theory and the comparison theorem of differential equations, a set of sufficient conditions that guarantee the extinction of the predator of the system is obtained.


2021 ◽  
pp. 1-28
Author(s):  
ANURAJ SINGH ◽  
PREETI DEOLIA

In this paper, we study a discrete-time predator–prey model with Holling type-III functional response and harvesting in both species. A detailed bifurcation analysis, depending on some parameter, reveals a rich bifurcation structure, including transcritical bifurcation, flip bifurcation and Neimark–Sacker bifurcation. However, some sufficient conditions to guarantee the global asymptotic stability of the trivial fixed point and unique positive fixed points are also given. The existence of chaos in the sense of Li–Yorke has been established for the discrete system. The extensive numerical simulations are given to support the analytical findings. The system exhibits flip bifurcation and Neimark–Sacker bifurcation followed by wide range of dense chaos. Further, the chaos occurred in the system can be controlled by choosing suitable value of prey harvesting.


2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


Sign in / Sign up

Export Citation Format

Share Document