scholarly journals Stochastic Analysis of a Hassell-Varley Type Predation Model

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Feng Rao ◽  
Shunjun Jiang ◽  
Yanqiu Li ◽  
Hao Liu

We investigate a Hassell-Varley type predator-prey model with stochastic perturbations. By perturbing the growth rate of prey population and death rate of predator population with white noise terms, we construct a stochastic differential equation model to discuss the effects of the environmental noise on the dynamical behaviors. Applying the comparison theorem of stochastic equations and Itô’s formula, the unique positive global solution to the model for any positive initial value is obtained. We find out some sufficient conditions for stochastically asymptotically boundedness, permanence, persistence in mean and extinction of the solution. Furthermore, a series of numerical simulations to illustrate our mathematical findings are presented. The results indicate that the stochastic perturbations do not cause drastic changes of the dynamics in the deterministic model when the noise intensity is small under some conditions, but while the noise intensity is sufficiently large, the species may die out, which does not happen in the deterministic model.

2014 ◽  
Vol 25 (11) ◽  
pp. 1450105 ◽  
Author(s):  
Zhenjie Liu

In this paper, we consider a stochastic nonautonomous predator–prey model with modified Leslie–Gower and Holling II schemes in the presence of environmental forcing. The deterministic model is the modified Holling–Tanner model which is an extension of the classical Leslie–Gower model. We show that there is a unique positive solution to the stochastic system for any positive initial value. Sufficient conditions for strong persistence in mean and extinction to the stochastic system are established.


2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Li Zu ◽  
Daqing Jiang ◽  
Fuquan Jiang

We consider a predator-prey model in which the preys disperse amongnpatches (n≥2) with stochastic perturbation. We show that there is a unique positive solution and find out the sufficient conditions for the extinction to the system with any given positive initial value. In addition, we investigate that there exists a stationary distribution for the system and it has ergodic property. Finally, we illustrate the dynamic behavior of the system withn=2via numerical simulation.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jinlei Liu ◽  
Wencai Zhao

In this paper, a stochastic Lotka–Volterra predator-prey model with discrete delays and feedback control is studied. Firstly, the existence and uniqueness of global positive solution are proved. Further, we investigate the asymptotic property of stochastic system at the positive equilibrium point of the corresponding deterministic model and establish sufficient conditions for the persistence and extinction of the model. Finally, the correctness of the theoretical derivation is verified by numerical simulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Lingzhi Huang ◽  
Zhichun Yang

We consider a delayed predator-prey model with harvesting effort and impulsive diffusion between two patches. By the impulsive comparison theorem and the discrete dynamical system determined by the stroboscopic map, we obtain some sufficient conditions on the existence and global attractiveness of predator-eradicated periodic solution for the system. Furthermore, the permanence of the system is derived. The obtained results will modify and improve the ones in some existing publications and give the estimate for the ultimately low and upper boundedness of the systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-21
Author(s):  
Zhenguo Luo ◽  
Liping Luo ◽  
Liu Yang ◽  
Zhenghui Gao ◽  
Yunhui Zeng

An impulsive Lotka-Volterra type predator-prey model with prey dispersal in two-patch environments and time delays is investigated, where we assume the model of patches with a barrier only as far as the prey population is concerned, whereas the predator population has no barriers between patches. By applying the continuation theorem of coincidence degree theory and by means of a suitable Lyapunov functional, a set of easily verifiable sufficient conditions are obtained to guarantee the existence, uniqueness, and global stability of positive periodic solutions of the system. Some known results subject to the underlying systems without impulses are improved and generalized. As an application, we also give two examples to illustrate the feasibility of our main results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wanying Shi ◽  
Youlin Huang ◽  
Chunjin Wei ◽  
Shuwen Zhang

In this paper, we study a stochastic Holling-type II predator-prey model with stage structure and refuge for prey. Firstly, the existence and uniqueness of the global positive solution of the system are proved. Secondly, the stochastically ultimate boundedness of the solution is discussed. Next, sufficient conditions for the existence and uniqueness of ergodic stationary distribution of the positive solution are established by constructing a suitable stochastic Lyapunov function. Then, sufficient conditions for the extinction of predator population in two cases and that of prey population in one case are obtained. Finally, some numerical simulations are presented to verify our results.


2010 ◽  
Vol 03 (03) ◽  
pp. 313-336 ◽  
Author(s):  
MANJU AGARWAL ◽  
SAPNA DEVI

This paper deals with a ratio-dependent predator-prey model where the prey population is stage-structured consisting of immature and mature stages and the predator population is influenced by the resource biomass. By means of a transformation of variables, we transform the model into a dynamical system in such a way that there is one-to-one correspondence between the positive values of the original model and the positive values of the transformed model, so that the results which are true for the transformed model are also true for the original model. Dynamical behaviors such as positivity, boundedness, stability, bifurcation and persistence of the model are studied analytically using theory of differential equations. Computer simulations are carried out to substantiate the analytical findings. It is noted that the influence of the resource biomass on the predator population may lead to the extinction of prey population at a lesser value of maturity time in comparison to the absence of the resource biomass.


Sign in / Sign up

Export Citation Format

Share Document