DISCRIMINATING 16 MUTUALLY ORTHOGONAL 4-ATOM CLUSTER STATES VIA CAVITY QED IN TELEPORTING ARBITRARY UNKNOWN TWO-ATOM STATE WITH A 4-ATOM CLUSTER STATE AS QUANTUM CHANNEL

2008 ◽  
Vol 19 (05) ◽  
pp. 741-747 ◽  
Author(s):  
WEN ZHANG ◽  
YI-MIN LIU ◽  
ZHANG-YIN WANG ◽  
ZHAN-JUN ZHANG

We propose a scheme for discriminating 16 mutually orthogonal 4-atom cluster entangled states (CES) via cavity QED in teleporting an arbitrary unknown two-atom state with a 4-atom CES as quantum channel. Utilizing the interaction of atoms with cavity and classical field, the complicated 4-atom CESs are transformed into the simple 4-atom product states. Hence the difficulty of measurement during the teleportation process is degraded. In the present scheme, we allow for the case of a strong classical driving field and the detuning between the atoms and the cavity is assumed large enough. Thereby the photon-number-dependent parts in the effective Hamiltonian can be neglected, and the scheme is insensitive to both the cavity decay and the thermal field.


2006 ◽  
Vol 04 (04) ◽  
pp. 627-631 ◽  
Author(s):  
YAN ZHAO ◽  
MING YANG ◽  
ZHUO-LIANG CAO

We propose a scheme for teleporting unknown atomic entangled states in cavity QED. With the assistance of a strong classical field, the photon number dependent parts in the effective Hamiltonian are canceled. Thus, the scheme is insensitive to both the cavity decay and the thermal field. In addition, our scheme does not require the Bell-state measurement directly and the success probability can reach 1.0 in our scheme.



2008 ◽  
Vol 22 (13) ◽  
pp. 2129-2137
Author(s):  
JIN-MING LIU ◽  
YI-CAI WANG ◽  
XIAO-QI XIAO

We present two schemes for probabilistically teleporting a two-atom entangled state using a three-atom partially entangled state as the quantum channel in cavity QED with the help of separate atomic measurements. The first scheme is only based on the interaction between two driven atoms and a quantized cavity mode in the large detuning limit, so the effects of both cavity decay and the thermal field are eliminated. In the second scheme, it is necessary to introduce an additional resonant cavity besides the thermal cavity to realize the teleportation, and the corresponding success probability is improved.



2012 ◽  
Vol 52 (1) ◽  
pp. 84-87 ◽  
Author(s):  
Yuan-hua Li ◽  
Xiao-lan Li ◽  
Yi-you Nie


2008 ◽  
Vol 22 (26) ◽  
pp. 2561-2570
Author(s):  
CHENG-YUAN GAO ◽  
LEI MA ◽  
JIN-MING LIU

We consider a physical process of two Λ-type three-level atoms interacting with a bimodal cavity including the influence of the cavity decay. We analyze the influence of cavity decay on several physical quantities of the process, such as atomic population probability, residual entanglement, concurrence of two atoms, average population inversion, average photon number, the fidelity for quantum phase gate, and the fidelity of generating atomic EPR state. It is found that all of these physical quantities decrease with the increase of cavity decay when the other relevant parameters are fixed.



2017 ◽  
Vol 15 (01) ◽  
pp. 1750002 ◽  
Author(s):  
Milad Nanvakenari ◽  
Monireh Houshmand

In this paper, a three-party controlled quantum secure direct communication and authentication (QSDCA) protocol is proposed by using four particle cluster states via a quantum one-time pad and local unitary operations. In the present scheme, only under the permission of the controller, the sender and the receiver can implement secure direct communication successfully. But under any circumstances, Charlie cannot obtain the secret message. Eavesdropping detection and identity authentication are achieved with the help of the previously shared reusable base identity strings of users. This protocol is unconditionally secure in both ideal and practical noisy cases. In one transmission, a qubit of each four particle cluster state is used as controller’s permission and the same qubit with another qubit are used to recover two classical bits of information. In the proposed scheme, the efficiency is improved compared with the previous works.



2009 ◽  
Vol 23 (27) ◽  
pp. 3225-3234 ◽  
Author(s):  
CHUAN-JIA SHAN ◽  
JI-BING LIU ◽  
WEI-WEN CHENG ◽  
TANG-KUN LIU ◽  
YAN-XIA HUANG ◽  
...  

A theoretical scheme of bidirectional quantum secure direct communication is proposed in the context of driven cavity QED. We first present an entanglement swapping scheme in cavities where two atoms without previous interaction can be entangled with a success probability of unity. Then, based on a novel property of entanglement swapping, we propose a bidirectional quantum secure direct communication protocol, in which two legitimate users can exchange their different secret messages simultaneously in a direct way. The probability of success in our scheme is 1.0. This scheme does not involve apparent (or direct) Bell-state measurements and is insensitive to the cavity decay and the thermal field.



2006 ◽  
Vol 23 (6) ◽  
pp. 1466-1469 ◽  
Author(s):  
Xiang Shao-Hua ◽  
Song Ke-Hui


2007 ◽  
Vol 18 (03) ◽  
pp. 343-349 ◽  
Author(s):  
ZHONG-XIAO MAN ◽  
YUN-JIE XIA ◽  
ZHAN-JUN ZHANG

We propose a scheme to secret sharing of an unknown N-atom entangled state in driven cavity QED. The scheme needs only atomic Bell states as the quantum channels and joint Bell-state measurement is unnecessary. In addition, the scheme is insensitive to the cavity decay and the thermal field.



2012 ◽  
Vol 12 (5) ◽  
pp. 1851-1857 ◽  
Author(s):  
Yi-you Nie ◽  
Yuan-hua Li ◽  
Xian-ping Wang ◽  
Ming-huang Sang


2012 ◽  
Vol 55 (12) ◽  
pp. 2439-2444 ◽  
Author(s):  
YuGuang Yang ◽  
Juan Xia ◽  
Xin Jia ◽  
Hua Zhang


Sign in / Sign up

Export Citation Format

Share Document