MOLECULAR DYNAMICS APPROACH TO CORRELATION CLUSTERING

2008 ◽  
Vol 19 (09) ◽  
pp. 1349-1358 ◽  
Author(s):  
R. SUMI ◽  
Z. NÉDA

A many-body system with co-existing attractive and repulsive interactions is considered on a ring. The competing interactions lead to a frustration similar with the one existing in Correlation Clustering (CC). The optimal mechanical equilibrium of the system is searched by molecular dynamics simulations. As a function of the disorder quenched in the interactions, the system exhibits the phase-transition recently reported in CC. The simulated system can be considered as a continuous and efficient approach to the otherwise discrete, NP hard CC problem.

2018 ◽  
Vol 15 ◽  
pp. 51-64
Author(s):  
Yu Lu Zhou ◽  
Xiao Ma Tao ◽  
Qing Hou ◽  
Yi Fang Ouyang

Molecular dynamics (MD) simulations, which treat atoms as point particles and trace their individual trajectories, are always employed to investigate the transport properties of a many-body system. The diffusion coefficients of atoms in solid can be obtained by the Einstein relation and the Green-Kubo relation. An overview of the MD simulations of atoms diffusion in the bulk, surface and grain boundary is provided. We also give an example of the diffusion of helium in tungsten to illustrate the procedure, as well as the importance of the choice of interatomic potentials. MD simulations can provide intuitive insights into the atomic mechanisms of diffusion.


Author(s):  
Bharti bharti ◽  
Debabrata Deb

We use molecular dynamics simulations to investigate the ordering phenomena in two-dimensional (2D) liquid crystals over the one-dimensional periodic substrate (1DPS). We have used Gay-Berne (GB) potential to model the...


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2001 ◽  
Vol 12 (06) ◽  
pp. 865-870 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
OSMAN BARIŞ MALCIOĞLU

The effect of chirality on the structural stability of single-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanotube in chiral structure is more stable under heat treatment relative to zigzag and armchair models. The diameter of the tubes is slightly enlarged under heat treatment.


Sign in / Sign up

Export Citation Format

Share Document