A NOTE ON THE ANALOGY BETWEEN KOLMOGOROV TURBULENCE AND QUANTUM GRAVITY

2010 ◽  
Vol 21 (11) ◽  
pp. 1329-1340 ◽  
Author(s):  
SAURO SUCCI

Based on a formal analogy between space-time quantum fluctuations and classical Kolmogorov fluid turbulence, we suggest that the dynamic growth of the Universe from Planckian to macroscopic scales should be characterized by the presence of a fluctuating volume-flux (FVF) invariant. The existence of such an invariant could be tested in numerical simulations of quantum gravity, and may also stimulate the development of a new class of hierarchical models of quantum foam, similar to those currently employed in modern phenomenological research on fluid turbulence. The use of such models shows that the simple analogy with Kolmogorov turbulence is not compatible with a fine-scale fractal structure of quantum space-time. Hence, should such theories prove correct, they would imply that the scaling properties of quantum fluctuations of space-time are subtler than those described by the simple Kolmogorov analogy.

2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Giacomo Gradenigo

AbstractThe symplectic quantization scheme proposed for matter scalar fields in the companion paper (Gradenigo and Livi, arXiv:2101.02125, 2021) is generalized here to the case of space–time quantum fluctuations. That is, we present a new formalism to frame the quantum gravity problem. Inspired by the stochastic quantization approach to gravity, symplectic quantization considers an explicit dependence of the metric tensor $$g_{\mu \nu }$$ g μ ν on an additional time variable, named intrinsic time at variance with the coordinate time of relativity, from which it is different. The physical meaning of intrinsic time, which is truly a parameter and not a coordinate, is to label the sequence of $$g_{\mu \nu }$$ g μ ν quantum fluctuations at a given point of the four-dimensional space–time continuum. For this reason symplectic quantization necessarily incorporates a new degree of freedom, the derivative $${\dot{g}}_{\mu \nu }$$ g ˙ μ ν of the metric field with respect to intrinsic time, corresponding to the conjugated momentum $$\pi _{\mu \nu }$$ π μ ν . Our proposal is to describe the quantum fluctuations of gravity by means of a symplectic dynamics generated by a generalized action functional $${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }] = {\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }] - S[g_{\mu \nu }]$$ A [ g μ ν , π μ ν ] = K [ g μ ν , π μ ν ] - S [ g μ ν ] , playing formally the role of a Hamilton function, where $$S[g_{\mu \nu }]$$ S [ g μ ν ] is the standard Einstein–Hilbert action while $${\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }]$$ K [ g μ ν , π μ ν ] is a new term including the kinetic degrees of freedom of the field. Such an action allows us to define an ensemble for the quantum fluctuations of $$g_{\mu \nu }$$ g μ ν analogous to the microcanonical one in statistical mechanics, with the only difference that in the present case one has conservation of the generalized action $${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }]$$ A [ g μ ν , π μ ν ] and not of energy. Since the Einstein–Hilbert action $$S[g_{\mu \nu }]$$ S [ g μ ν ] plays the role of a potential term in the new pseudo-Hamiltonian formalism, it can fluctuate along the symplectic action-preserving dynamics. These fluctuations are the quantum fluctuations of $$g_{\mu \nu }$$ g μ ν . Finally, we show how the standard path-integral approach to gravity can be obtained as an approximation of the symplectic quantization approach. By doing so we explain how the integration over the conjugated momentum field $$\pi _{\mu \nu }$$ π μ ν gives rise to a cosmological constant term in the path-integral approach.


2021 ◽  
Vol 34 (2) ◽  
pp. 150-167
Author(s):  
Ge Guangzhou

This author further develops the theory of quantum gravity with Hamilton's tensor equation so as to achieve the compatibility between quantum and space-time. He also reveals the underlying new geometric structure behind it, which is the geometry of energy-time or matter-space that can be regarded as the further development of Einstein's space-time geometry. On this basis, this author probes into such topics that include CPT symmetry, new transistor, new superconductor, antigravity, and new law of gravity creating something out of nothing in the universe.


Author(s):  
L. Marchetti ◽  
D. Oriti

We analyze the size and evolution of quantum fluctuations of cosmologically relevant geometric observables, in the context of the effective relational cosmological dynamics of GFT models of quantum gravity. We consider the fluctuations of the matter clock observables, to test the validity of the relational evolution picture itself. Next, we compute quantum fluctuations of the universe volume and of other operators characterizing its evolution (number operator for the fundamental GFT quanta, effective Hamiltonian and scalar field momentum). In particular, we focus on the late (clock) time regime, where the dynamics is compatible with a flat FRW universe, and on the very early phase near the quantum bounce produced by the fundamental quantum gravity dynamics.


1989 ◽  
Vol 67 (10) ◽  
pp. 935-938
Author(s):  
K. D. Krori ◽  
P. Borgohain ◽  
Dipali Das Kar

The well-known operator technique in quantum mechanics is used to study quantum fluctuations near the space–time singularity using Kantowski–Sachs and Bianchi type VIo metrics. In both cases the wave function of the universe is found to diverge near the space–time singularity, indicating the divergence of the quantum uncertainty near the initial epoch.


2012 ◽  
Vol 23 (01) ◽  
pp. 1250001
Author(s):  
SAURO SUCCI

Simple arguments based on the general properties of quantum fluctuations have been recently shown to imply that quantum fluctuations of spacetime obey the same scaling laws of the velocity fluctuations in a homogeneous incompressible turbulent flow, as described by Kolmogorov 1941 (K41) scaling theory. Less noted, however, is the fact that this analogy rules out the possibility of a fractal quantum spacetime, in contradiction with growing evidence in quantum gravity research. In this Note, we show that the notion of a fractal quantum spacetime can be restored by extending the analogy between turbulence and quantum gravity beyond the realm of K41 theory. In particular, it is shown that compatibility of a fractal quantum spacetime with the recent Horava–Lifshitz scenario for quantum gravity, implies singular quantum wavefunctions. Finally, we propose an operational procedure, based on extended self-similarity techniques, to inspect the (multi)-scaling properties of quantum gravitational fluctuations.


2016 ◽  
pp. 4058-4069
Author(s):  
Michael A Persinger

                                Translation of four dimensional axes anywhere within the spatial and temporal boundaries of the universe would require quantitative values from convergence between parameters that reflect these limits. The presence of entanglement and volumetric velocities indicates that the initiating energy for displacement and transposition of axes would be within the upper limit of the rest mass of a single photon which is the same order of magnitude as a macroscopic Hamiltonian of the modified Schrödinger wave function. The representative metaphor is that any local 4-D geometry, rather than displaying restricted movement through Minkowskian space, would instead expand to the total universal space-time volume before re-converging into another location where it would be subject to cause-effect. Within this transient context the contributions from the anisotropic features of entropy and the laws of thermodynamics would be minimal.  The central operation of a fundamental unit of 10-20 J, the hydrogen line frequency, and the Bohr orbital time for ground state electrons would be required for the relocalized manifestation. Similar quantified convergence occurs for the ~1012 parallel states within space per Planck’s time which solve for phase-shift increments where Casimir and magnetic forces intersect.  Experimental support for these interpretations and potential applications is considered. The multiple, convergent solutions of basic universal quantities suggest that translations of spatial axes into adjacent spatial states and the transposition of four dimensional configurations any where and any time within the universe may be accessed but would require alternative perspectives and technologies.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


Sign in / Sign up

Export Citation Format

Share Document