MAGNETIZED ROTATING NEUTRON STARS SIMULATED BY GENERAL-RELATIVISTIC POLYTROPIC MODELS: THE NUMERICAL TREATMENT

2011 ◽  
Vol 22 (10) ◽  
pp. 1107-1137
Author(s):  
V. S. GEROYANNIS ◽  
A. G. KATELOUZOS ◽  
F. N. VALVI

We compute general-relativistic polytropic models of magnetized rotating neutron stars, assuming that magnetic field and rotation can be treated as decoupled perturbations acting on the nondistorted configuration. Concerning the magnetic field, we develop and apply a numerical method for solving the relativistic Grad–Shafranov equation as a nonhomogeneous Sturm–Liouville problem with nonstandard boundary conditions. We present significant geometrical and physical characteristics of six models, four of which are models of maximum mass. We find negative ellipticities owing to a magnetic field with both toroidal and poloidal components; thus the corresponding configurations have prolate shape. We also compute models of magnetized rotating neutron stars with almost spherical shape due to the counterbalancing of the rotational effect (tending to yield oblate configurations) and the magnetic effect (tending in turn to derive prolate configurations). In this work such models are simply called "equalizers." We emphasize on numerical results related to magnetars, i.e. ultramagnetized neutron stars with relatively long rotation periods.

Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 83 ◽  
Author(s):  
Kevin Franceschetti ◽  
Luca Del Zanna

Neutron stars, and magnetars in particular, are known to host the strongest magnetic fields in the Universe. The origin of these strong fields is a matter of controversy. In this preliminary work, via numerical simulations, we study, for the first time in non-ideal general relativistic magnetohydrodynamic (GRMHD) regime, the growth of the magnetic field due to the action of the mean-field dynamo due to sub-scale, unresolved turbulence. The dynamo process, combined with the differential rotation of the (proto-)star, is able to produce an exponential growth of any initial magnetic seed field up to the values required to explain the observations. By varying the dynamo coefficient we obtain different growth rates. We find a quasi-linear dependence of the growth rates on the intensity of the dynamo. Furthermore, the time interval in which exponential growth occurs and the growth rates also seems to depend on the initial configuration of the magnetic field.


2007 ◽  
Vol 3 (S247) ◽  
pp. 344-350
Author(s):  
Michael S. Ruderman

AbstractIn this paper we study non-axisymmetric oscillations of thin twisted magnetic tubes taking the density variation along the tube into account. We use the approximation of the zero-beta plasma. The magnetic field outside the tube is straight and homogeneous, however it is twisted inside the tube. We assume that the azimuthal component of the magnetic field is proportional to the distance from the tube axis, and that the tube is only weakly twisted, i.e. the ratio of the azimuthal and axial components of the magnetic field is small. Using the asymptotic analysis we show that the eigenmodes and eigenfrequencies of the kink and fluting oscillations are described by a classical Sturm-Liouville problem for a second order ordinary differential equation. The main result is that the twist does not affect the kink mode.


2014 ◽  
Vol 28 ◽  
pp. 1460202 ◽  
Author(s):  
A. G. PILI ◽  
N. BUCCIANTINI ◽  
L. DEL ZANNA

Magnetic fields play a crucial role in many astrophysical scenarios and, in particular, are of paramount importance in the emission mechanism and evolution of Neutron Stars (NSs). To understand the role of the magnetic field in compact objects it is important to obtain, as a first step, accurate equilibrium models for magnetized NSs. Using the conformally flat approximation we solve the Einstein's equations together with the GRMHD equations in the case of a static axisymmetric NS taking into account different types of magnetic configuration. This allows us to investigate the effect of the magnetic field on global properties of NSs such as their deformation.


2012 ◽  
Vol 8 (S291) ◽  
pp. 586-588
Author(s):  
Xia Zhou ◽  
Miao Kang ◽  
Na Wang

AbstractThe effect of magnetic field decay on the chemical heating and thermal evolution of neutron stars is discussed. Our main goal is to study how chemical heating mechanisms and thermal evolution are changed by field decay and how magnetic field decay is modified by the thermal evolution. We show that the effect of chemical heating is suppressed by the star spin-down through decaying magnetic field at a later stage; magnetic field decay is delayed significantly relative to stars cooling without heating mechanisms; compared to typical chemical heating, the decay of the magnetic field can even cause the temperature to turn down at a later stage.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850240
Author(s):  
Babur M. Mirza

We present here a general relativistic mechanism for accelerated cosmic expansion and the Hubble’s parameter. It is shown that spacetime vorticity coupled to the magnetic field density in galaxies causes the galaxies to recede from one another at a rate equal to the Hubble’s constant. We therefore predict an oscillatory universe, with zero curvature, without assuming violation of Newtonian gravity at large distances or invoking dark energy/dark matter hypotheses. The value of the Hubble’s constant, along with the scale of expansion, as well as the high isotropy of CMB radiation are deduced from the model.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 63
Author(s):  
Hui Wang ◽  
Zhi-Fu Gao ◽  
Huan-Yu Jia ◽  
Na Wang ◽  
Xiang-Dong Li

Young pulsars are thought to be highly magnetized neutron stars (NSs). The crustal magnetic field of a NS usually decays at different timescales in the forms of Hall drift and Ohmic dissipation. The magnetization parameter ω B τ is defined as the ratio of the Ohmic timescale τ O h m to the Hall drift timescale τ H a l l . During the first several million years, the inner temperature of the newly born neutron star cools from T = 10 9 K to T = 1.0 × 10 8 K, and the crustal conductivity increases by three orders of magnitude. In this work, we adopt a unified equations of state for cold non-accreting neutron stars with the Hartree–Fock–Bogoliubov method, developed by Pearson et al. (2018), and choose two fiducial dipole magnetic fields of B = 1.0 × 10 13 G and B = 1.0 × 10 14 G, four different temperatures, T, and two different impurity concentration parameters, Q, and then calculate the conductivity of the inner crust of NSs and give a general expression of magnetization parameter for young pulsars: ω B τ ≃ ( 1 − 50 ) B 0 / ( 10 13 G) by using numerical simulations. It was found when B ≤ 10 15 G, due to the quantum effects, the conductivity increases slightly with the increase in the magnetic field, the enhanced magnetic field has a small effect on the matter in the low-density regions of the crust, and almost has no influence the matter in the high-density regions. Then, we apply the general expression of the magnetization parameter to the high braking-index pulsar PSR J1640-4631. By combining the observed arrival time parameters of PSR J1640-4631 with the magnetic induction equation, we estimated the initial rotation period P 0 , the initial dipole magnetic field B 0 , the Ohm dissipation timescale τ O h m and Hall drift timescale τ H a l l . We model the magnetic field evolution and the braking-index evolution of the pulsar and compare the results with its observations. It is expected that the results of this paper can be applied to more young pulsars.


2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


2000 ◽  
Vol 177 ◽  
pp. 265-266
Author(s):  
D. Mitra ◽  
S. Konar ◽  
D. Bhattacharya ◽  
A. V. Hoensbroech ◽  
J. H. Seiradakis ◽  
...  

AbstractThe evolution of the multipolar structure of the magnetic field of isolated neutron stars is studied assuming the currents to be confined to the crust. Lower orders (≤ 25) of multipole are seen to evolve in a manner similar to the dipole suggesting little or no evolution of the expected pulse shape. We also study the multifrequency polarization position angle traverse of PSR B0329+54 and find a significant frequency dependence above 2.7 GHz. We interpret this as an evidence of strong multipolar magnetic field present in the radio emission region.


2007 ◽  
Vol 22 (19) ◽  
pp. 3305-3315 ◽  
Author(s):  
JING-JING LIU ◽  
ZHI-QUAN LUO ◽  
HONG-LIN LIU ◽  
XIANG-JUN LAI

The neutrino energy loss rates on iron group nuclei by electron capture are calculated in a strong magnetic field at the crusts of Neutron stars. The results show that the magnetic field has only a slight effect on the neutrino energy loss rates in a range of 108–1013 G on surfaces of the most neutron stars. Whereas for some magnetars which range of the magnetic field is 1013–1018 G, the neutrino energy loss rates of the most iron group nuclei would be debased greatly and may be even decreased for 4 orders of magnitude by the strong magnetic field.


Sign in / Sign up

Export Citation Format

Share Document