Electronic and geometric structure of AuxCuy clusters studied by density functional theory

2014 ◽  
Vol 25 (06) ◽  
pp. 1450011 ◽  
Author(s):  
Y. Kadioglu ◽  
O. Üzengi Aktürk ◽  
M. Tomak

We have determined the stable structures of Au Cu n, Au 2 Cu n, Au 3 Cu n and Au x Cu 8-x clusters. It has been observed that Au Cu n, Au 2 Cu n and Au 3 Cu n systems have two-dimensional (2D) structures up to six atoms and they become three-dimensional (3D) afterwards. Au x Cu 8-x clusters favor 3D structures till the Au 7 Cu 1 cluster. We have found a lowest energy isomer of Au 6 Cu 2 from the literature. Bond lengths, binding energies, density of states (DOS), highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO-LUMO) gaps, ionization potential (IP) and electron affinity (EA) have been calculated for these structures using the first principles density functional theory (DFT) within the generalized gradient approximation (GGA) and the local density approximation (LDA). Generally, we have observed the overlap between s electrons of Cu and p electrons of Au near the Fermi level. Charge transfers are calculated by using the Löwdin analysis. It is observed that one Cu atom does not significantly modify the clusters which have more gold atoms. It is also seen that these clusters generally have nonmagnetic properties and results are consistent with the hybridization between s and d orbitals of Au in Au x Cu 8-x clusters.

2021 ◽  
Author(s):  
xiaosong Xu ◽  
Renfa Zhang ◽  
Wenxin Xia ◽  
Peng Ma ◽  
Congming Ma ◽  
...  

Abstract The external electric field has a significant influence on the sensitivity of the energetic cocrystal materials. In order to find out the relationship between the external electric field and sensitivity of energetic cocrystal compounds 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1,4-dinitroimidazole (CL-20/1,4-DNI), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1-methyl-2,4-dinitro-1H-imidazole (CL-20/2,4-MDNI) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1-methyl-4,5-dinitro-1H-imidazole (CL-20/4,5-MDNI). In this work, density functional theory (DFT) at B3LYP-D3/6-311+G(d,p) and M062X-D3/ma-def2 TZVPP levels was employed to calculate the bond dissociation energies (BDEs) of selected N-NO2 trigger bonds, frontier molecular orbitals, electrostatic potentials (ESPs) and nitro group charges (QNO2) under different external electric field. The results show that as the positive electric field intensity increases, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy gap and BDEs become smaller, and the local positive ESPs becomes larger, so that the energetic cocrystals tends to have higher sensitivity. In addition, the linear fitting results show that the trigger bond length and nitro group charge changes are closely related to the external electric field strength.


2021 ◽  
Vol 03 (02) ◽  
pp. 18-27
Author(s):  
Methaq Talib MATROOD ◽  
Aqeel Adil HASAN

Nanomedicine remains the medicinalrequest of nanotechnology. Nanodrugvarietiesafter the medicinalrequests of nanoparticles, to nanoelectronic biosensors, thenuniform possible future applications of particle nanotechnology.Nanoparticle of medicationtransporters are optimized aimed atpreoccupation of medicationsfinishedbreathtreatment. Demonstrating and imitation of nanocrystal limits of the theophylline (C7H8N4O2)byindium – antimony (In7Sb7H20 (in diamantane constructionhave been performed by Gaussian 09 program. DFT hasremainedused for InSb nanoparticle, theophyllinemedication. Optimization and frequency on the ground national level,PBEPBE, 3-21G basis sets consumesremainedexamined. The custodiesaimed ataltogetherremainequivalenttoward zero custodies. The geometry optimization by means of both methods (PBE) for InSb diamantane nanoparticles and theophyllinedrug has been originate cutting-edgedecent agreement by experimental dataMolecular detour theory has been used to discovery highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies. Total energy, ionization potential and electron empathy have beenintendedaimed atInSbnanostructure bytheophyllinemedication.


2021 ◽  
Vol 1028 ◽  
pp. 199-203
Author(s):  
Fiqhri Heda Murdaka ◽  
Edi Suprayoga ◽  
Abdul Muizz Pradipto ◽  
Kohji Nakamura ◽  
Agustinus Agung Nugroho

We report the estimation of muon sites inside Mn3Sn using density functional theory based on the full-potential linearized augmented plane wave (FLAPW) calculation. Our calculation shows that the Perdew–Burke–Ernzerhof (PBE) Generalized-Gradient Approximation (GGA) functional is closer to the experimental structure compared to the von Barth-Hedin Local Density Approximation (LDA)-optimized geometry. The PBE GGA is therefore subsequently used in FLAPW post-calculation for the electrostatic potential calculation to find the local minima position as a guiding strategy for estimating the muon site. Our result reveals at least two muon sites of which one is placed at the center between two Mn-Sn triangular layers (A site) and the other at the trigonal prismatic site of Sn atom (B site). The total energy of Mn3Sn system in the presence of muon at A site or B site are compared and we find that A site is a more favorable site for muon to stop.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250006
Author(s):  
PRABODH SAHAI SAXENA ◽  
PANKAJ SRIVASTAVA ◽  
ASHWANI Kr. SHRIVASTAVA

We have investigated the lowest-energy structures and electronic properties of the Cu n(n = 2–10) nanoclusters based on density functional theory (DFT) in local density approximation. The total energies, binding energies per atom, bond lengths, HOMO-LUMO gaps and ionization potentials have been calculated. The results are compared well with other theoretical and available experimental results.


2014 ◽  
Vol 1698 ◽  
Author(s):  
Meghana Rawal ◽  
Kerry Garrett ◽  
Andreas F. Tillack ◽  
Werner Kaminsky ◽  
Evgheni Jucov ◽  
...  

ABSTRACTWe studied the effect of a cross-conjugated bridging group (χC) on charge-transfer in a push-pull chromophore system. The hyperpolarizability of such molecules was found to be comparable to that of a fully π-conjugated molecule (πC) with the same donor and acceptor. The cross-conjugated moiety was then applied as a pendant to a fully π-conjugated chromophore containing a tricyanopyrroline acceptor (TCP). The addition of a χC moiety did not alter the intrinsic hyperpolarizability and provides an avenue for extending and aiding πC systems. The molecules were examined by X-ray diffraction (XRD), hyper-Raleigh scattering (HRS) and UV-visible (UV-vis) spectroscopy. Experimental results were compared with the predictions of density functional theory (DFT). Cross-conjugated molecules have comparable β values, relative to πC molecules, due to reduced spatial overlap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Thus, the χC architecture could facilitate independent modification of donor and acceptor strengths while minimizing unfavorable effects on electronic transitions and dipole moments.


2007 ◽  
Vol 06 (04) ◽  
pp. 959-973 ◽  
Author(s):  
MEHDI D. ESRAFILI ◽  
FATEMEH ELMI ◽  
NASSER L. HADIPOUR

The binding energies, geometries, 7 Li magnetic shielding, and electric field gradient tensors of hydrogenated lithium clusters, Li n H m (m ≤ n ≤ 4), were studied via density functional theory approach. We optimized the structures using B3LYP functional and 6-311++G (2d,2p) basis set. The calculated binding energies of lithium hydride clusters indicate that hydrogenation energy of Li n H m clusters decreases as the number of hydrogen atoms within the cluster increases. Our calculations also showed that for n = 4 clusters, the three-dimensional structure is more stable than the planar one. The study of the trends in the 7 Li magnetic shielding isotropy, σiso, and anisotropies, Δσ, values are explained in terms of the interplay between the electronic and geometrical effects. The variations in the 7 Li nuclear quadrupole coupling constants, χ, and their associated asymmetry parameters, ηQ, for different isomers of the lithium hydride clusters and the influence of hydrogenation on the EFG tensors are also discussed. For n = 4, we obtained a noticeable difference in the χ value from the planar to the three-dimensional structures. The atoms in molecules (AIM) analysis at the Li–H bond critical point reveals remarkably different topographical properties of the charge density and associated Laplacian fields for the planar and three-dimensional lithium hydride clusters.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012002
Author(s):  
Dalal H Alsawad ◽  
Ali A Al-Riyahee ◽  
Ali J Hameed

Abstract A series of 4-(para-substituted phenyl)-1,2,3-selenadiazole adducts of [VO(acac)2] were studied by density functional theory (DFT) calculations. The 4-(para-substituted phenyl)-1,2,3-selenadiazole molecules have been selected to be bound with vanadium atom in [VO(acac)2] through Se, N2 and N3. The resulting adducts have been investigated in two geometries (cis and trans) in order to show the effect of such structural change on the electronic properties of the studied adducts. The optimized geometries, (binding and reorganization) energies and the spatial distribution of the highest molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the adducts are presented and discussed.


2020 ◽  
Vol 21 (3) ◽  
pp. 974 ◽  
Author(s):  
Kaizheng Wang ◽  
Feipeng Wang ◽  
Ziyi Lou ◽  
Qiuhuang Han ◽  
Qi Zhao ◽  
...  

The effects of C=C, ester and β-H groups on the ionization potential (IP) and electron affinity (EA) of molecules in natural ester insulation oil were investigated by density functional theory (DFT). The major contribution to the highest occupied molecular orbital (HOMO) comes from the carbon atoms adjacent to C=C. Thus, the IPs of triglycerides decrease as the number of C=C double bonds increases. The C=C in alkanes may also lower the IP. However, the β-H in triglycerides has little effect on the IP, and C=C and β-H have only a small effect on the EAs of the triglycerides because of the major contributions of atoms near the ester group in triglycerides to the lowest unoccupied molecular orbital (LUMO). This study calculated the IPs of 53 kinds of molecules in FR3, which are significantly lower compared with those of molecules in mineral oil (MO) and trimethylolpropane triester without C=C. However, the lightning impulse breakdown voltage (LI Vb) of trimethylolpropane triester is still significantly lower than that of MO at the large gap. Therefore, the transition from slow to fast streamers under low lighting impulse voltage is determined by the ester group rather than by C=C and β-H. The ester group may attract more electrons, impacting itself more compared to alkane in MO and facilitating the transition from slow to fast streamers.


Sign in / Sign up

Export Citation Format

Share Document