scholarly journals Hall current, Newtonian heating and second-order slip effects on convective magneto-micropolar fluid flow over a sheet

2018 ◽  
Vol 29 (09) ◽  
pp. 1850090 ◽  
Author(s):  
Muhammad Kamran ◽  
Benchawan Wiwatanapataphee ◽  
Kuppalapalle Vajravelu

This research deals with an analysis of the Hall current effect on the mixed convective magneto-micropolar fluid flow over a permeable stretching/shrinking sheet. Impact of the Newtonian heating parameter is analyzed in the slip flow regime. The nonlinear equations of the fluid flow are derived with the help of a similarity transform and its solutions are obtained by Optimal Homotopy Analysis Method (OHAM). For limiting cases, obtained results are in excellent agreement with the available exact and numerical results in the literature. The graphical and tabular representations of the obtained results show significant effects of the physical parameters on the magneto-micropolar fluid flow and heat transfer characteristics. In particular, it is observed that, as the sheet stretches, a change in the Hall current parameter yields a higher horizontal velocity component for the lower value of the magnetic field parameter; while it produces a higher and shorter transverse velocity profile at high intensity of the magnetic field. In Magnetohydrodynamics (MHD) generators, Hall effects are an important consideration to analyze the heat transfer phenomenon with high temperature conducting fluids.

2016 ◽  
Vol 5 (4) ◽  
pp. 310-317 ◽  
Author(s):  
Aurangzaib ◽  
Md. Sharif Uddin ◽  
Krishnendu Bhattacharyya ◽  
Sharidan Shafie

Author(s):  
S Shuchi ◽  
K Sakatani ◽  
H Yamaguchi

An investigation was conducted for heat transfer characteristics of binary magnetic fluid flow in a partly heated circular pipe experimentally. The boiling heat transfer characteristics on the effects of the relative position of the magnetic field to the heated region were particularly considered in the present study. From the experimental verification, the Nusselt number, representing boiling heat transfer characteristics, was obtained for various flow and magnetic conditions which were represented by the non-dimensional parameters of the Reynolds number and the magnetic pressure number. Additionally, the rate of change of the Nusselt number found by applying the magnetic field was also estimated and the optimal position of the field to the partly heated region was discussed. The results indicated that the effect of the magnetic field to the heat transfer rate from the heated wall was mainly subjected to the effect of the vortices induced in the magnetic field region and the possibility of controlling the heat transfer rate by applying an outer magnetic field to utilize the effect.


Author(s):  
Abbas Hazbavi ◽  
Sajad Sharhani

In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hartmann number slows down the movement of the fluid in the channel. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Also the effect of pressure gradient is investigated on velocity and microrotation in different diagrams.


Sign in / Sign up

Export Citation Format

Share Document