Electronic energy loss assessment in theoretical modeling of primary radiation damage in tungsten

Author(s):  
Fan Cheng ◽  
Qirong Zheng ◽  
Yonggang Li ◽  
Chuanguo Zhang ◽  
Zhi Zeng
1988 ◽  
Vol 5 (3) ◽  
pp. 241-245 ◽  
Author(s):  
A Audouard ◽  
E Balanzat ◽  
G Fuchs ◽  
J. C Jousset ◽  
D Lesueur ◽  
...  

1994 ◽  
Vol 129 (1-2) ◽  
pp. 105-112 ◽  
Author(s):  
A. Caro ◽  
M. Alurralde ◽  
S. Proennecke ◽  
M. Victoria

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Parswajit Kalita ◽  
Santanu Ghosh ◽  
Gaëlle Gutierrez ◽  
Parasmani Rajput ◽  
Vinita Grover ◽  
...  

AbstractIrradiation induced damage in materials is highly detrimental and is a critical issue in several vital science and technology fields, e.g., the nuclear and space industries. While the effect of dimensionality (nano/bulk) of materials on its radiation damage tolerance has been receiving tremendous interest, studies have only concentrated on low energy (nuclear energy loss (Sn) dominant) and high energy (electronic energy loss (Se) dominant) irradiations independently (wherein, interestingly, the effect is opposite). In-fact, research on radiation damage in general has almost entirely focused only on independent irradiations with low and/or high energy particles till date, and investigations under simultaneous impingement of energetic particles (which also correspond to the actual irradiation conditions during real-world applications) are very scarce. The present work elucidates, taking cubic zirconia as a model system, the effect of grain size (26 nm vs 80 nm) on the radiation tolerance against simultaneous irradiation with low energy (900 keV I) and high energy (27 meV Fe) particles/ions; and, in particular, introduces the enhancement in the radiation damage tolerance upon downsizing from bulk to nano dimension. This result is interpreted within the framework of the thermal-spike model after considering (1) the fact that there is essentially no spatial and time overlap between the damage events of the two ‘simultaneous’ irradiations, and (2) the influence of grain size on radiation damage against individual Sn and Se. The present work besides providing the first fundamental insights into how the grain size/grain boundary density inherently mediates the radiation response of a material to simultaneous Sn and Se deposition, also (1) paves the way for potential application of nano-crystalline materials in the nuclear industry (where simultaneous irradiations with low and high energy particles correspond to the actual irradiation conditions), and (2) lays the groundwork for understanding the material behaviour under other simultaneous (viz. Sn and Sn, Se and Se) irradiations.


2016 ◽  
Vol 105 ◽  
pp. 429-437 ◽  
Author(s):  
P. Liu ◽  
Y. Zhang ◽  
H. Xue ◽  
K. Jin ◽  
M.L. Crespillo ◽  
...  

2007 ◽  
Vol 13 (2) ◽  
pp. 96-107 ◽  
Author(s):  
Masanori Koshino ◽  
Hiroki Kurata ◽  
Seiij Isoda

The effect of peripheral halogenation is examined based on analytical transmission electron microscopy and thermal analyses of two chemical family structures, specifically the vanadyl-phthalocyanine family (VOPcX: X = H16, F14.5) and the copper-phthalocyanine family (CuPcX: X = H16, F16, Cl16, Cl8Br8), focusing on the process of molecular changes and crystalline disintegrations. To clarify the molecular transformations, electron energy-loss spectroscopy (EELS) is applied to two fluorinated phthalocyanines (VOPcF14.5 and CuPcF16), by monitoring mass changes as well as energy loss near edge structures (ELNES). The elemental mass of both VOPcF14.5 and CuPcF16 remain constant up to 0.5 C·cm−2, except in the case of mass reduction attributed to oxygen loss occurring in VOPcF14.5. It is expected that the released oxygen will induce higher radiation damage in VOPcF14.5. Although mass variation is not observed in CuPcF16, it is found from ELNES that the π resonant system of nitrogen is more radiation sensitive than that of carbon. These results imply that the electron sensitivity in VOPcX is triggered by eliminated oxygen or, thus, an induced larger empty space, whereas the sensitivity of CuPcX is dominated only by a large intermolecular empty space resulting in the following bond alterations. It is also found that the decomposition temperature (Td) measured by thermal analyses and the characteristic dose (D1/e) are exponentially correlated to the “effective molecular occupancy” (Oe) evaluated as a volume function of molecules in unit cells. By measuring Td and/or Oe, we discuss the durability of peripheral halogenation with respect to the radiation damage.


Sign in / Sign up

Export Citation Format

Share Document