Extracts from the Roots of Lindera strychifolia Induces Apoptosis in Lung Cancer Cells and Prolongs Survival of Tumor-bearing Mice

2003 ◽  
Vol 31 (06) ◽  
pp. 857-869 ◽  
Author(s):  
Yun-Mo Li ◽  
Yasushi Ohno ◽  
Shinya Minatoguchi ◽  
Kazunori Fukuda ◽  
Tetsuro Ikoma ◽  
...  

Lindera strychifolia, a scandent shrub Lauraceous medicinal plant, has been used in Chinese traditional medicine as a palliative and an anti-spasmodic. It also shows cytotoxic effects against several tumor cell lines and inhibits marcromolecule biosynthesis. This study investigated the anti-tumor effects of L. strychifolia extract against lung cancer cells using in vitro and in vivo models. Two human lung cancer cell lines A549 (adenocarcinoma) and SBC-3 (small cell carcinoma), and a non-tumor cell line 3T3-L1 (mice fibroblasts) were subjected to L. strychifolia extract treatment. On lung cancer cells, L. strychifolia induced cell growth inhibition in a dose-dependent manner. Conversely, the extract did not show any significant cytotoxic effect on 3T3-L1 cells. Therefore, the extract is specific for tumor cells. Tumor cells treated with L. strychifolia extract showed typical morphological appearance of apoptosis including nuclei fragmentation and cell condensation. The in vivo effects of L. strychifolia extract were investigated in C57BL/6 mice transplanted with Lewis lung cancer (LL-2) cells, and in BALB/c nude mice transplanted with A549 or SBC-3 human lung cancer cells. Oral administration of L. strychifolia extract prolonged survival time and inhibited tumor growth in a dose-dependent manner by inducing apoptosis in the LL-2 cell mice model. Furthermore, in A549 or SBC-3 cell nude mice models, oral administration of L. strychifolia extract also significantly inhibited tumor growth at the 5.0 mg/ml concentration. These findings suggested that the components of L. strychifolia have anticancer activity and may contribute to clinical applications in the prevention and treatment of lung cancer.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2021 ◽  
Author(s):  
Huazhen Xu ◽  
Tongfei Li ◽  
Chao Wang ◽  
Yan Ma ◽  
Yan Liu ◽  
...  

Abstract Background: Tumor-associated macrophages (TAM) are the most abundant stromal cells in the tumor microenvironment. Turning the TAM against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically “cold” tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells’ immunogenicity and thereby reactivate the TAM into the anti-tumor M1 phenotype. Results: Nano-DOX were first shown to stimulate the tumor cells and the TAM to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAM. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1’s action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAM both by blocking Nano-DOX-induced PD-L1 in the TAM and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAM with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX’s action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. Conclusions: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAM to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAM, achieves enhanced activation of TAM-mediated anti-tumor response.


Gene Therapy ◽  
2019 ◽  
Vol 27 (1-2) ◽  
pp. 51-61
Author(s):  
Juliana G. Xande ◽  
Ana P. Dias ◽  
Rodrigo E. Tamura ◽  
Mario C. Cruz ◽  
Bárbara Brito ◽  
...  

2005 ◽  
Vol 222 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Yeung-Leung Cheng ◽  
Shih-Chun Lee ◽  
Shinn-Zong Lin ◽  
Wen-Liang Chang ◽  
Yi-Lin Chen ◽  
...  

1996 ◽  
Vol 74 (12) ◽  
pp. 1929-1934 ◽  
Author(s):  
Y Abe ◽  
Y Ohnishi ◽  
M Yoshimura ◽  
E Ota ◽  
Y Ozeki ◽  
...  

Author(s):  
Konstantin Komoshvili ◽  
Tzippi Beker ◽  
Jacob Levitan ◽  
Asher Yahalom ◽  
Ayan Barbora ◽  
...  

Efficiently targeted cancer therapy without causing detrimental side effects is necessary for alleviating patient care and improving survival rates. This paper presents observations of morphological changes in H1299 human lung cancer cells following MMW irradiation (75 – 105 GHz) at a non-thermal power density of 0.2 mW/cm2, investigated over 14 days of subsequent physiological incubation following exposure. Microscopic analyses of physical parameters measured indicate MMW irradiation induces significant morphological changes characteristic of apoptosis and senescence. The Immediate short-term stress responses translate into long-term effects, retained over the duration of the experiment(s); reminiscent of the phenomenon of Accelerated Cellular Senescence (ACS) achieving terminal tumorigenic cell growth. Further, results were observed to be treatment-specific in energy (dose) dependent manner and were achieved without the use of chemotherapeutic agents, ionizing radiation or thermal ablation employed in conventional methods; thereby overcome associated side effects. Adaptation of the experimental parameters of this study in clinical oncology concomitant with current developmental trends of non-invasive medical endoscopy alleviates MMW therapy as an effective treatment procedure for human non-small cell lung cancer (NSLC)


2001 ◽  
Vol 412 (1) ◽  
pp. 13-20 ◽  
Author(s):  
H.Christian Weber ◽  
James Walters ◽  
Julius Leyton ◽  
Marchessini Casibang ◽  
Sally Purdom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document